COVID-19 RESPONSE - We are committed to supporting our scientific community during this pandemic. Learn more 

Antibody Discovery Using Phage Display

Phage display

Phage display is a technique used to study the interaction of proteins displayed on the surface of a bacteriophage with other molecules such peptides, DNA, and other proteins. Phage display is commonly used to find high affinity interactions between antibodies and antigens, which play a critical role in viral pathogenesis, vaccines, and other treatments.

Watch the video with Rebecca Kreipke, Field Applications Scientist, as she walks you through our solution to accelerate your phage display workflow.

Phage display workflow

Automated solutions to increase workflow efficiency of your phage display

The phage display workflow is a robust, easy to perform, and inexpensive method by which to identify specific high-affinity antigen binders from large combinatorial libraries containing up to billions of potentially clinically relevant antibodies. This makes it especially suited to benefit from the addition of automated solutions, which will allow you to decrease the manual effort required to identify your most promising antibody targets and fast track discovery.

 

 

Antibody discovery workflow using phage display

 

Phage display steps

 

Step 1: Panning

Panning is an iterative process for enriching phage within a population that possess high affinity binding to a target of interest compared to others. Begin by enriching your population of phage with high-affinity binding by exposing the library to your antigen of choice and then eluting and amplifying only those with the highest binding affinity.
 

Step 2: Colony picking 

Bacteriophage selected from the previous step are then cloned and picked in order to isolate each unique protein binder.
 

Step 3: Ag-antibody interactions 

During panning, phages displaying proteins with higher binding affinity are selected in relation to phages displaying lower affinity proteins. This qualitative selection process requires validation using more quantitative immunoassays to assess antibody-antigen interactions such as ELISA, immunofluorescence, HTRF, complement fixation, agglutination, and/or precipitation.
 

Step 4: Functional screening

Following the characterization of antibody-antigen interactions, candidate molecules are then screened for functional activity (e.g. viral neutralization or vaccine efficacy), often using cell-based assays.
 

 

 

Phage display technology for production of antibodies

QPix™ system speeds workflow for screening phage display antibody

Industrial applications from biotech to synthetic biology are using phage display because of its high throughput capabilities for protein interaction determination and protein engineering. However, in order to select high-affinity binders, or ligands, which can recognize a naive target from a phage library (~107 - 1012), non-binding bacteriophages need to be washed away, and phages that bind specifically with target molecules are eluted and harvested through 3–5 rounds of panning. Using conventional methods, this can be laborious to perform when screening multiple selections with diffrent antigens simultaneously. To speed up their screening, scientists are incorporating new technologies like the QPix™systems into their workflow to speed up their phage display antibody screening.

phage display

The QPix system is ideal for automating the plating and picking of clones, as well as complete phage library management system.

  • Picking at a speed of 3000 clones per hour, with over 98% efficiency.
  • 8 hours of unattended run time per day
  • Screen and pick up to 30,000 colonies a day

Discuss your solution

 

 

Systems to accelerate your COVID-19 research

Get up and running rapidly with proven technologies

Molecular Devices is able to support your research needs by offering technology and solutions rapidly with express processing, shipping and customized finance solutions if needed on microplate readers, biopharma and cellular imaging systems.

QPix 420 Microbial Colony Pickers

The QPix™ 400 Series Microbial Colony Pickers combine intelligent image analysis with precise automation for fast and efficient screening of large libraries. Capable of picking up to 3000 colonies per hour, it will streamline your workflow.

View product  

ClonePix 2 Mammalian Colony Picker

The ClonePix™ 2 Mammalian Colony Picker is a fully automated system for the selection of high-value clones used in antibody discovery and cell line development.

View product  

ImageXpress Pico Automated Cell Imaging System

Our ImageXpress systems offer an end-to-end solution for high-content screening and analysis. All our systems support a wide range of applications, increased throughput, and streamlined workflows.

View product  

SpectraMax i3x Multi Mode Microplate Reader

Our SpectraMax® series of microplate readers measure absorbance, fluorescence, and luminescence plus additional detection modes with available upgrades for western blot, cell imaging, and fast kinetics with injectors. GMP/GLP labs can meet FDA guidelines with our SoftMax Pro GxP compliance and validation solution.

View products  

 

Softmax Pro Gxp Software

SoftMax® Pro 7.1.1 GxP Software is the latest, most secure software to achieve full FDA 21 CFR Part 11 compliance with streamlined workflows to ensure data integrity. Every step is optimized to simplify analysis and reporting to support our microplate readers.

View product  

AquaMax Microplate Washer

Our washers provide speed and configurability options—from single-tube dispensing to washing full 96- and 384-well plates.

View product  

fsight

The CloneSelect™ Single-Cell Printer™ Series deposits single cells gently and with high efficiency using a patented, inkjet-like disposable, one-way dispensing cartridge.

View product  

CloneSelect Imager

The CloneSelect™ Imager is a high-throughput automated solution for imaging and analyzing mammalian cells.

View product  

 

Resources related to COVID-19 cellular responses and vaccine development

Here we highlight a few key application notes to support your COVID-19 research. For a complete list of common applications in infectious diseases including cell line development, binding affinity, viral neutralization, viral titer, view our Coronavirus Vaccine Research page.

Systems to accelerate your COVID-19 cellular response and vaccine development

We have validated and compliant laboratory solutions including microplate readers, microplate washers, biopharma and cellular imaging systems to meet your research needs.