Pulmonary (lung, airway) organoids
Lung organoid cultures are 3D microtissue models recapitulating the morphological and functional characteristics of the airway. They can be formed primary human lung epithelial cells in ECM with growth factors. The cells can self-assemble into the multi-lineage lung epithelium comprising different cell populations.
Lung organoids display characteristic features of the human airway, such as mucus secretion, ciliary beating, and regeneration. This biological relevance enables the study of repair/regeneration mechanisms in lung injury and phenotypic changes in pulmonary diseases. Lung organoids also can be used for toxicity assessment or drug testing.
Because lung organoids are hollow, with lumen and cavities inside, they are easily penetrated by light. This makes them compatible with 3D biological assays and suitable for confocal imaging, allowing quantitative characterization of cellular content, live-dead assessment, and cell scoring for specific markers.
Lung organoids can be cultured and monitored via automated workflows. Machine-learning-based image analysis, can track the growth of diameter and area, density and number of objects. Advanced image analysis allows 3D reconstitution and complex analysis of organoids, including cell morphology, viability, and differentiation markers.
Lung organoid cell image gallery





More great resources
Learn how to improve your research for disease modeling and drug screening with lung organoids:
Resources for Pulmonary (Lung) Organoids
Blog
Engineering Next-gen Organoids with Automated Lab Workflows at #SLAS2022
Engineering Next-gen Organoids with Automated Lab Workflows at #SLAS2022
SLAS2022, the Society for Lab Automation and Screening conference offered another exciting year for learning about innovative laboratory technologies. Whether you attended in-person…
Blog
History of Organoid Research: From Sponge Cells to Functional Organs
History of Organoid Research: From Sponge Cells to Functional Organs
Let's begin with a simple definition of an organoid which refers to a three-dimensional assembly that contains multiple cell types that are arranged with realistic histology, at…
Blog
Stem cell science insights and breakthroughs presented at #ISSCR2021
Stem cell science insights and breakthroughs presented at #ISSCR2021
If you didn't get a chance to visit us at our poster sessions during ISSCR 2021, don’t fret. We've gathered all our sessions right here for you. The ISSCR Annual Meeting brought…
Application Note
Organoids for disease modeling and in vitro drug screening
Organoids for disease modeling and in vitro drug screening
3D cell models representing various tissues were successfully used for studying complex biological effects, tissue architecture, and functionality. However, the complexity of 3D models…
Scientific Poster
Deep learning-based image analysis for label-free live monitoring of iPSC 3D organoid cultures
Deep learning-based image analysis for label-free live monitoring of iPSC 3D organoid cultures
Complex 3D biological models such as organoids and patient derived spheroids are gaining popularity in many biomedical research areas because they more closely recapitulate the in vivo tissu…
Application Note
Lung organoids as an assay model for in vitro assessment of toxicity effects by 3D high-content imaging and analysis
Lung organoids as an assay model for in vitro assessment of toxicity effects by 3D high-content imaging and analysis
Organoid models have increasingly gained popularity in biologic research and screening to recapitulate complexity of real tissues. To model the in vivo human lungs, we have cultured primary…