

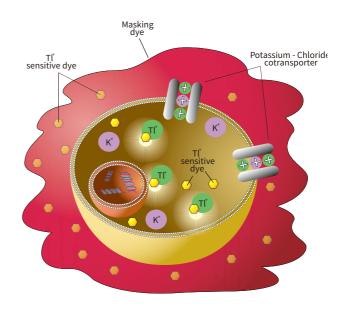
APPLICATION NOTE

使用 FLIPR 钾离子检测试剂盒进行基于细胞的氯化钾转运体实验方法开发

介绍

氯化钾转运体成员 5 (SLC 12 A 5 或 KCC 2) 是由 SLC 12 基因家族编码的九种阳离子氯离子共转运体 (CCCs) 之一,是神经元中唯一优先表达的 CCC 转运体。 KCC 2 在中枢神经系统的正常运作中起着至关重要的作用,在维持神经元细胞内 Cl-浓度 ([Cl-]。) 方面起着关键作用。 KCC 2 参与了许多神经元过程的控制,其受损的活动已在脊髓损伤后的癫痫、神经性疼痛和痉挛中得到证实。 这表明 KCC 2 活性或表达的阳性调节剂可能为 KCC 2 功能缺陷引起的神经系统疾病提供有效的治疗。

FLIPR 钾离子检测试剂盒含有一种新型的高灵敏度铊 (Tl⁺) 指示剂染料,该染料通过钾离子通道与 Tl⁺ 结合后产生明亮的荧光。信号强度与细胞上钾离子通道开放数量成正比;因此它可以作为钾离子通道活性的替代指标。该试剂盒还采用了 Molecular Devices 专有的屏蔽染料,以减少背景荧光,从而提高信号/背景比。由于 Tl⁺ 也由阳离子-氯离子共转运体转运,因此 FLIPR 钾检测试剂盒可以通过测量 KCC 2 介导的 Tl⁺ 转运/流入的初始速率,轻松评估化合物对 KCC 2 活性的影响。


实验原理

与非均质检测相比,该检测试剂盒的 TI⁺ 指示剂染料具有一个扩大的信号窗口。BTC - am 是一种 Ca²⁺ 指示剂,由于 TI⁺ 离子也能增强 BTC 的荧光,因此也被用于钾离子通道的监测。在染料加载过程中,TI⁺ 指示剂染料以乙酰氧基甲基酯 (AM) 的形式通过细胞膜被动扩散进入细胞。细胞质酯酶裂解AM 酯,释放出活性的成氟形式。检测试剂盒中含有一种专有的细胞外屏蔽染料,以减少背景荧光 (图1)。为了激活氯化钾转

运体,在存在或不存在测试化合物 (如 KCC 2 抑制剂) 的情况下,用 K+和 Tl+的混合物 刺激细胞。在使用的检测条件下,荧光信号的增加代表了 Tl+通过共转运体特异性地进入细胞,因此代表了对共转运体活性的功能测量。共转运体活性的调节是通过包含 KCC2 抑制剂来实现的。FLIPR 钾离子检测试剂盒 (Molecular Devices,Cat# R8222)含有 Tl+敏感染料,用于均相操作的屏蔽染料,200 mm K₂SO₄,50 mm Tl₂SO₄,5X 无氯缓冲液,以及含有 20 mm HEPES 的 HBSS缓冲液。该试剂盒可用于10个96、384-或1536 孔板。检测工作流程如图 2 所示。

优势

- 基于细胞的实验中 K+/ cl 共转 运体活性的动态检测提供了丰 富的信息数据
- 均质免洗方案减少了孔与孔之 间的变化,提高了检测的一致 性和有效性
- 非放射性试剂 (不像传统的 Rb⁺ 射流检测)
- 适用于高通量筛选

图1 FLIPR 钾离子检测试剂盒原理。 细胞胞质 TI⁺的增加可通过 FLIPR 或 FlexStation 系统使用铊敏感染料指示剂检测到。

实验流程

细胞培养和转染

HEK 293T (ECACC Cat. # 12022001) 细胞在含有生长培养基(补充有 10% FBS 和 2 mm L - 谷氨酰胺的 DMEM)的 T75 烧瓶中生长至 80 - 90% 汇合。在 5% CO₂的存在下,培养物保持在 37°C。细胞每 3 - 4 天传代一次,传代率为 1:6。实验前两天用Lipofectamine 2000 (Thermo Fisher Cat. # 11668027)转染人 KCC 2 (hKCC 2) 细胞。根据制造商的说明。转染混合物与生长培养基混合,直接在 10000 个细胞/孔的 96孔黑壁透明底板上铺板培养,37°C、5% CO₂,孵育 48 小时。

KCC 2 抑制实验

孔板中的生长培养基被移除,然后添加 FLIPR 钾离子检测试剂盒或 BTCAM (2 μM) 在 37°C 条件下避光孵育一小时。加载的缓 冲液中包含 10 μM 布美他尼,用于减少内 源性 NKCC Tl+ 流入/传输信号,同时含有 0.1 mM 乌本苷,作为一种 Na+/K+ - ATP 酶 阻断剂,用于抑制 ATP 依赖的细胞膜钠钾 交换。在加载染料之后,清洗 BTC - AM 共 孵育的细胞以去除多余的染料。添加 KCC 2 抑制剂,并在染料加载时间的最后 45 分钟孵育(FLIPR 钾离子检测试剂盒处 理组)。在 FLIPRTETRA 系统上检测时, 在孔中加入优化的刺激缓冲液 (9 mm K+/0.9 mM Tl⁺)。Tetra 系统采用 470 - 495 nm 激 发 LED 和 515 - 575 nm 发射滤光片。数据 文件被导入 SoftMaxPro 数据采集和分析 软件中,以便使用导入特性(图3)进行后 续分析,该特性可用于 SoftMaxPro 6.4.1 或更高版本。初始速率(Vmax,单位为每 秒)是根据刺激后的前10秒数据计算出来 的。

Add 50 µL of Start with **Incubate for** Remove K+/TI+ 10,000 60 min. at growth stimulus cells/well in a 37°C in the media and buffer & black walled dark, add 22 replace with measure clear bottom μ**L of 10X** 200 μL/well fluorescent 96-well compound dye solution signal for 5 microplate after 15 min. min.

图 2 FLIPR 钾离子检测试剂盒在 FLIPRTetra 高通量实时荧光检测分析系统上的工作流程。

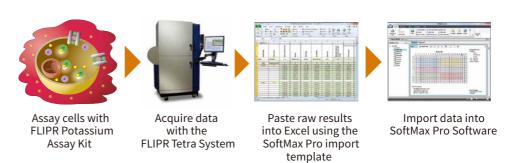


图 3 SoftMax Pro 6.4.2 导入流程。

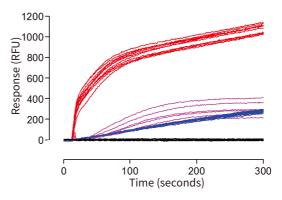


图 4 FLIPR Tetra 系统上获取的代表性荧光信号轨迹 (每个处理组 ≥ 6 孔), HEK 293 细胞加载了 FLIPR 钾离子检测试剂盒或 BTC - AM。数据显示,在 hK CC 2 转染细胞中,仅添加缓冲液 (-) 或添加 Tl¹ (-),以及在加载 FLIPR 钾离子检测试剂盒的模拟转染细胞中,仅添加缓冲液 (-) 或添加 Tl¹ (-) 的效果。同时,还比较了添加 Tl¹ (-) 对转染细胞中加载 BTC - AM 的影响。



图 5 FLIPR Tetra 系统上获取的代表性荧光信号轨迹,hK CC2 - 转染细胞加载了 FLIPR 钾离子检测试剂盒。数据显示了在 30 μ M R - (+) - DIOA 存在或不存在情况下,只添加缓冲液 (-) 或添加 Tl⁺ 的效应。

结果

用新型 FLIPR 钾离子试剂盒或 BTC - AM 加 载 hKCC 2 转染或模拟转染的 HEK 293 细胞 后,我们测量了在 FLIPR Tetra 系统上检 测时添加外部 Tl+引起的荧光增加。在装有 FLIPR 钾离子检测试剂盒的细胞中加入 Tl+ 后,hKCC 2 驱动的 FLIPR 信号在最初 10 秒内呈现快速增长, 随后增长较慢, 最终 进入平稳期。与模拟转染细胞相比, hKCC 2 转染细胞荧光信号显著更高 (P < 0.001; Student's t-test),如图 4 所 示。平均 Z 因子计算为 0.60 ± 0.05,表明 实验结果的稳定和可靠 2。与此相反,BTC-AM 加载细胞的信号增加较慢,表现出很大 的变异性,信号的大小要低得多。由于这 些原因,没有进一步比较分析试剂盒和 BTC - AM_o

然后我们用加载有 FLIPR 钾离子试剂盒的 表达 hKCC 2 的细胞进行了一系列实验,以 评估 Tl+内流试验是否可以用于检测 hKCC 2活性的调节剂。在每一个96孔板中,细 胞被分为对照溶液组或 30 μM R - (+) - DIOA (一种烷酸,已被证明是 K+/Cl-协同转运 体的一种有效的选择性抑制剂)组。从图 5中可以看出,K+/Tl+-诱发的荧光增强所 产生的信号在孔与孔之间非常一致,对照 组信号与 R - (+) - DIOA 信号显著区分 (P < 0.001; Student's t - test).

在没有抑制剂的条件下, K+/Tl+刺激产生 Vmax 53.9 \pm 5.1 (units/second),而在30 μM R - (+) - DIOA 条件下,超过四次独立实 验中总计n≥30孔的结果表明(Figure 6), Vmax 减少至 17.5 ± 1.9 (units/second)。

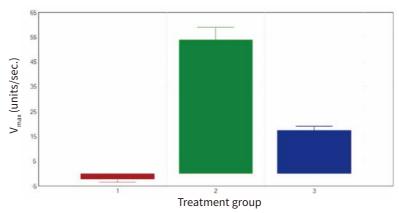


图 6 不同条件对 hkcc 2 转染细胞的影响。数据显示了三种不同处理组的结果:1.只添加缓冲溶液 (n), 和 2. 在没有 (n) 或 3. 存在 (n) 30 μM R - (+) -DIOA 的情况下添加 Tl+/K+。柱状图代表的意思是Vmax (units/sec.) \pm SEM (n \geq 30).

结论

我们已经证明 FLIPR 钾离子检测试剂盒可 以使用均匀的、不清洗的方案来测量 hKCC 2 阳离子 - 氯离子共转运体的功能活 性。该检测试剂盒显示出较大的检测窗 口和良好的重现性,能够成功地检测到 已知的 hKCC 2 活性调节剂。与传统染料如 BTC - AM 相比,简化的实验方案和稳健的 检测质量,结合 FLIPR Tetra 系统的高通 量能力,为筛选 hKCC 2 共转运体调节剂提 供了一个强大的解决方案。

致谢

Andrea Townsend-Nicholson and Stephanie Schorge, University College London, and Simon Lydford, Molecular Devices (UK) Ltd.

参考文献

1. Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, et al. Roles of the cation - chloride cotransporters in neurological disease. Nat Clin Pract Neurol. 2008;4:490-503.

更多精彩内容 尽在官方微信

美谷分子仪器(上海)有限公司

全国咨询服务热线: 400-820-3586 www.MolecularDevices.com.cn Email: info.china@moldev.com

上海 电话: 86-21-3372 1088 北京 电话: 86-10-6410 8669

成都 申话: 86-28-6558 8820 台北

电话: 886-2-2656 7585

传真: 86-21-3372 1066 传真: 86-10-6410 8601 传直: 86-28-6558 8831

传真: 886-2-2894 8267

传真: 852-2289 5385

地址: 上海市长宁区福泉北路 518 号 1 座 501 室 200335 地址: 北京市朝阳区广渠东路 3 号中水电国际大厦 612 & 613 室 100124

地址:香港中环皇后大道中15号置地广场 公爵大厦21楼

地址: 成都市锦江区东御街 18 号百扬大厦 2208 室 610016 地址: 台北市内湖区堤顶大道二段 89 号 3 楼

MOLECULAR DEVICES