
Meta Imaging Series® Software
 MetaMorph® Software

Visual Basic Reference Guide

Version 7.6.5 for
Microsoft Windows XP

and Microsoft Windows Vista

1020 2201-02

This document is provided to customers who have purchased Molecular Devices, Inc.
(“Molecular Devices”) equipment, software, reagents, and consumables to use in the operation
of such Molecular Devices equipment, software, reagents, and consumables. This document is
copyright protected and any reproduction of this document, in whole or any part, is strictly
prohibited, except as Molecular Devices may authorize in writing.

Equipment, software, reagents, and consumables that may be described in this document are
protected under one or more patents filed in the United States, Canada, and other countries.
Additional patents are pending.

Software that may be described in this document is furnished under a license agreement. It is
against the law to copy, modify, or distribute the software on any medium, except as
specifically allowed in the license agreement. Furthermore, the license agreement may prohibit
the software from being disassembled, reverse engineered, or decompiled for any purpose.

Portions of this document may make reference to other manufacturers and/or their products,
which may contain parts whose names are registered as trademarks and/or function as
trademarks of their respective owners. Any such usage is intended only to designate those
manufacturers' products as supplied by Molecular Devices for incorporation into its equipment
and does not imply any right and/or license to use or permit others to use such
manufacturers' and/or their product names as trademarks.

Molecular Devices makes no warranties or representations as to the fitness of this equipment
for any particular purpose and assumes no responsibility or contingent liability, including
indirect or consequential damages, for any use to which the purchaser may put the equipment
described herein, or for any adverse circumstances arising therefrom.

For research use only. Not for use in diagnostic procedures.

META IMAGING SERIES, METAMORPH, METAFLUOR and METAVUE are registered trademarks of
Molecular Devices, Inc. These trademarks may not be used in any type of promotion or
advertising without the prior written permission of Molecular Devices, Inc.

Equipment built by Molecular Devices, Inc.

1311 Orleans Drive, Sunnyvale, California, United States of America 94089.

Molecular Devices, Inc. is ISO 9001 registered.

© 2010 Molecular Devices, Inc.

All rights reserved.

Printed in the USA.

MetaMorph Visual Basic Reference Guide Page i

Contents

Chapter 1: Introduction ... 1
Overview ..1
Conventions Used in This Manual ...4
The Run User Program Command ...6
Visual Basic and User Programs ..8
Creating a User Program ..11
Data Types and Arrays ...18

Chapter 2: Performing Serial and Digital I/O Communication ... 20
Overview ..20
Performing Serial Data Transmission...21
Communicating with a Digital I/O Device...26

Chapter 3: Executing Commands and Journals .. 31
Overview ..31
Executing Commands and Journals..32

Chapter 4: Reading and Manipulating Images and Image Windows.. 38
Overview ..38
Loading, Creating, Copying, and Closing Images..39
Finding Loaded Images ..46
Manipulating Image Windows ...49
Reading and Using Image Properties ...53

Chapter 5: Adjusting Image Display... 60
Overview ..60
Updating the Image After Changing the Display ...61
Adjusting Brightness and Contrast ...62
Autoscaling 16-Bit Images ...66
Working with Look-up Tables and Palettes ...71

Chapter 6: Reading and Using Image Pixel Data .. 77
Overview ..77
Applying Thresholding...78
Reading and Manipulating Image Data ..82

Chapter 7: Working with Regions of Interest .. 96
Overview ..96
Creating and Removing Regions..97
Finding Regions ...99
Reading and Manipulating Region Properties ..103
Reading Image Data from Regions ..109

Chapter 8: Performing Morphometry .. 113
Overview ..113
Configuring Measurement Preferences ..114
Configuring Object Measurements...115
Configuring Classifier Filters ...119
Measuring All Objects in an Image..121
Measuring Single Objects...126

Page ii Visual Basic Reference Guide MetaMorph

Figures

Introduction
1.1 The Run User Program Dialog Box ..6
1.2 Class Module UserMethods Section Code ...14

Reading and Manipulating Images and Image Windows
4.1 Image “Get” Function Programming Example ...56

Working with Regions of Interest
7.1 Region Property “Get” Function Programming Example ...106
7.2 Region Data “Get” Function Programming Example ...112

Performing Morphometry
8.1 Single Object Data “Get” Function Programming Example...132

MetaMorph Visual Basic Reference Guide Page iii

Tables

Introduction
1.1 Creating a User Program with Visual Basic .NET 2005/2008..11
1.2 Creating a User Program with Visual Basic .NET 2002/2003..12
1.3 Creating a User Program with Visual Basic Version 5 or 6 ...……………………...……………. 15
1.4 Data Types and Arrays ...18

Performing Serial and Digital I/O Communication
2.1 Syntax Rules for Serial Data Transmission...23
2.2 ASCII Control Codes ..24

MetaMorph Visual Basic Reference Guide Page 1

Chapter 1 − Introduction

1.1 Overview
Introduction Welcome to the Visual Basic Reference Guide for the MetaMorph® software for

image processing and analysis, and the Meta Imaging Series® software system. This
manual has been designed to serve as a working reference for the use of the extended
set of Visual Basic programming functions by the Run User Program drop-in
command in the MetaMorph® software. The Run User Program command, located in
the File menu, provides you with the ability to run your own Visual Basic programs
from within the MetaMorph program. This will allow you to process and analyze
images with greater flexibility.

The full power of Microsoft Visual Basic is available to you, with the ability to run
conditional “If…Then…Else” routines, to create nested subroutines and loops, and to
pass and return values with the imaging system. It is assumed that you already have a
working knowledge of Visual Basic and its application. This manual describes the
extended set of programming functions that MetaMorph provides, and is intended to
serve as a supplement to any Visual Basic references that you may already have.

Note: The following versions of Microsoft Visual Basic can be used to create
programs to run in version 7.0 of the MetaMorph software:

 Microsoft Visual Basic .NET 2008 Professional or Enterprise editions
 Microsoft Visual Basic .NET 2005 Professional or Enterprise editions
 Microsoft Visual Basic .NET 2003 Professional or Enterprise editions
 Microsoft Visual Basic .NET 2002 Professional or Enterprise editions
 Microsoft Visual Basic 6.0 Professional or Enterprise editions
 Microsoft Visual Basic 5.0 Professional or Enterprise editions

Note that the Standard and Express editions of the above versions are NOT supported.

Page 2 Visual Basic Reference Guide MetaMorph

Structure of
this manual

This Reference Guide starts with some fundamental concepts about Visual Basic user
programs and the Run User Program command. The rest of this manual is devoted to
a description of the extended set of functions available for use in MetaMorph. Each
entry starts with a short description of what the function does. The full syntax of the
expression is given, and the involved parameters and returns are explained. For many
entries, a “See Also” list of related or otherwise relevant functions is provided. For the
most part, these functions will be in the same section of the manual as the function
being described. For those located elsewhere in the manual, the pertinent section will
be given in parentheses.

The chapters in this guide are roughly arranged in the order that you might expect to
use them through the course of an experiment and thereafter:
• Chapter 1 describes how to install the RUNUSER drop-in and create your own user

programs with Microsoft Visual Basic.
• Chapter 2 describes functions that are used to communicate with serial or digital

devices.
• Chapter 3 covers execution of commands and journals.
• Chapters 4 and 5 deal with the use of image windows and adjusting their display.
• Chapter 6 concerns thresholding and performing basic densitometric procedures.
• Chapter 7 describes how to work with regions of interest.
• And finally, Chapter 8 ends the manual with a description of the morphometric

functions that are available.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 3

1.1 Overview, continued

In this chapter This chapter contains the following topics:

Topic See Page

Conventions Used in This Manual 4

The Run User Program Command 6

Visual Basic and User Programs 8

Creating a User Program 11

Data Types and Arrays 18

Page 4 Visual Basic Reference Guide MetaMorph

1.2 Conventions Used in This Manual

Introduction Before we proceed, it may be useful first to define some of the terms used in this

manual and to review some of the typographical conventions that are used.

Some definitions Array A multidimensional (usually one- or two-dimensional) “table” that stores

values. For example, you can define an array and read into it the X and Y coordinates
of an object’s outline by using the MorphGetVertexList function. In Visual Basic,
you can declare arrays of up to 60 dimensions. (See Section 1.6, Data Types and
Arrays.)

Boolean In its widest sense, this is a logical operand such as AND, OR, or NOT.
When used to describe a variable, a Boolean indicates a logical state, such as TRUE
or FALSE. As integers, FALSE is represented by 0 and TRUE is represented by -1 or
some other nonzero value.

Double A double-precision (64-bit) floating-point number that encodes the value of
a variable. Numbers can range from approximately -1.8 X 10308 through -4.9 X 10-324
for negative values and 4.9 X 10-324 through 1.8 X 10308 for positive values.

Function A programming “command” that carries out some procedure. For example,
the PrintMsg function prompts MetaMorph to display a message box that you have
previously configured.

Handle An index number used by the program to deal with and keep track of images,
image windows, functions, regions of interest, and MetaDevices.

Integer In Visual Basic, a 16-bit binary signed (negative or positive) whole number
that encodes the value of a variable. Integers can range from -32,767 through 32,767.

Long A 32-bit signed whole number that encodes the value of a variable. Numbers
can range from -2,147,483,647 through 2,147,483,647.

Parameter A value or an identifying element that is passed by the user to the
program, such as the handle of an image you want to measure, or a set of coordinates
that you want to use to position an image window.

Return value A value or state returned by the program in response to a query. For
example, the upper and lower limits of a threshold range, expressed as integers, are
the return values for the GetThresholdRange function.

Single A single-precision (32-bit) floating point number that encodes the value of a
variable. Numbers can range from approximately -3.4 X 1038 through -1.4 X 10-45 for
negative values and 1.4 X 10-45 through 3.4 X 1038 for positive values.

String A segment of alphanumeric text.

Variable A placeholder that represents something that is acted upon by a function.
For example, the variable nObjectID is used to represent the object in an image that is
to be deleted by the MorphDeleteObject function.

Variant A variable that is not explicitly assigned to a particular data type. Variants
can store different types of data—integers, floating point numbers, or character
strings—depending on the need at the time.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 5

1.2 Conventions Used in This Manual, continued

Typographical
conventions

The following table lists the typographical conventions used in the Visual Basic
Reference Guide.

This: Represents…

Italics Variables
Examples: hImage, nXPos

Bold Functions
Examples: LoadImage, SetRegionSize

ALL CAPITALS Returned or passed states or Booleans
Examples: EXCLUSIVE, TRUE

1.3 The Run User Program Command

Installing the
RUNUSER
drop-in

MetaMorph allows you to run Visual Basic functions by using the Run User Program
drop-in command. As with all other drop-ins, you will need to use the Configure
Drop-ins command in the Meta Imaging Series Administrator to load the RUNUSER
drop-in prior to starting MetaMorph. This will place the Run User Program command
in your File menu, below the Run Program command (don’t confuse the two!).

The Run User
Program
dialog box

When you choose Run User Program from the File menu, a dialog box will appear
which contains a drop-down list box, a text box, a check box, and four command
buttons (see Fig. 1.1). This dialog box provides an interface from within MetaMorph
for you to pass parameters to the user program which you will have written in Visual
Basic.

Figure 1.1 The Run User Program Dialog Box

Run User
Program dialog
box options

Program Name
Contains a list of all of your user programs that are currently registered with the
system. The entries in the list will be descriptions that were entered in Visual Basic
when you created your program. If there is no description, the project name entered in
Visual Basic will appear instead.

Command Line
This is a text field which will be passed to your user program as the parameter for the
Startup and DoCommand functions (see Section 1.4). You might use this field, for
example, to specify the name of an image that your program will then load, convolve
with an image filter, threshold, measure, log measurement data from, and close.

Continued on next page

Page 6 Visual Basic Reference Guide MetaMorph

MetaMorph Visual Basic Reference Guide Page 7

1.3 The Run User Program Command, continued

Run User Program dialog box options
(continued)

 Keep Program in Memory After Execution

This check box determines whether your user program will stay in memory after
running, or if it will be unloaded when the routine is completed. If you select the
check box, the program will stay in memory, and will therefore run more quickly on
subsequent runs. If you clear this check box, the program will be unloaded after
running. This may be useful when you are debugging your program, as you can leave
both MetaMorph and Visual Basic running at the same time, alternating between
running your program and editing it. Visual Basic would not be able to recompile
your program if the check box were still selected.
When the Keep Program in Memory check box is selected, the Startup function will
be called the first time your program is run after being loaded. Subsequent runs will
call the DoCommand function. When this check box is cleared, the Shutdown
function will be called after the program finishes. If this check box is cleared before
you run the program for the first time, the Startup and Shutdown functions will be
called each time you run the program (see Section 1.4 for more about these three
functions).

Browse
If the program you want to run does not appear in the Program Name list, this
command button will allow you to search your system for it. This button opens the
Select Start File dialog box, which is a standard file-selection dialog box that has a
Look In drop-down list, Up One Level icon button, File Name text box, and a table
that displays the files in the current folder.
When you create a user program, Visual Basic registers it with the system when it is
compiled, and it should then be available in the Program Name list. However, if you
obtain a program that was compiled elsewhere, it will not have been registered on
your system. The Browse command button will register the program and insert it in
the Program Name list.

NOTE- this only works for user programs created with Visual Basic 6 and earlier.

Remove
Choosing this button will remove the currently highlighted user program from the
Program Name list and unregisters it with the system.

NOTE- this only works for user programs created with Visual Basic 6 and earlier.

OK
Loads the program selected in the Program Name list, passes the parameter you
specify in the Command Line text box, runs the user program, and closes the Run
User Program dialog box.

Cancel
Cancels any changes made in the Run User Program dialog box and closes it.

Page 8 Visual Basic Reference Guide MetaMorph

1.4 Visual Basic and User Programs

About user
programs

A user program is essentially an ActiveX object that communicates with the
MetaMorph application using Microsoft’s object linking and embedding (OLE)
interface. However, it is not necessary to be familiar with the details of this
communication when using Microsoft Visual Basic, the language supported by the
MetaMorph software to write user programs.

Note: The following versions of Microsoft Visual Basic can be used to create
programs to run in version 7.0 of the MetaMorph software:

 Microsoft Visual Basic .NET 2008 Professional or Enterprise editions
 Microsoft Visual Basic .NET 2005 Professional or Enterprise editions
 Microsoft Visual Basic .NET 2003 Professional or Enterprise editions
 Microsoft Visual Basic .NET 2002 Professional or Enterprise editions
 Microsoft Visual Basic 6.0 Professional or Enterprise editions
 Microsoft Visual Basic 5.0 Professional or Enterprise editions

Note that the Standard and Express editions of the above versions are NOT supported.

Variables and
functions
required by the
MetaMorph
software

To be recognized by the MetaMorph software, a Visual Basic user program must
contain three variables, MM, gParentWnd and gUserID, and three functions, Startup,
DoCommand, and Shutdown. There are several other more technical requirements,
but these will be covered in the discussion of the use of specific versions of Visual
Basic (Section 1.5).

The two variables, gParentWnd and gUserID, are of type Long, and MM is a variant:

MM

MM is a variant that is used for all of your communication with the
MetaMorph software. For example, to put the handle of the current image in
the MetaMorph software into the variable sourceImage, you would use the
following:

 Public sourceImage Long As
 MM.GetCurrentImage sourceImage

gParentWnd

This will have the handle of the MetaMorph program’s main window placed
in it. It is primarily useful for languages other than Visual Basic which are not
yet supported.

gUserID

This variable is for future expansion, so you won’t be using it immediately,
but it must be present nonetheless.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 9

1.4 Visual Basic and User Programs, continued

Variables and functions required by the MetaMorph software s
(continued)

oftware

 The three functions are Startup, DoCommand, and Shutdown.

Startup(cmdLine As String) As Long (or Integer)

This function is called when the program needs to be loaded into memory to
run. cmdLine will contain the text entered in the Command Line text box of
the Run User Program dialog box. Startup should return a value of 0 on
success and a nonzero value on failure. The return value is currently ignored
in MetaMorph, but in the future it may be used.

DoCommand(cmdLine As String) As Long (or Integer)

This function is called when the program is run after it has already been
loaded into memory. cmdLine will contain the text entered in the Command
Line text box of the Run User Program dialog box. DoCommand should
return a value of 0 on success and a nonzero value on failure. As with the
Startup function return, this return value is currently ignored in MetaMorph,
but in the future it may be used. If your program behaves the same way
whether it is already loaded or not, you may want to have Startup simply call
DoCommand, and put the code that does the work in DoCommand.

Shutdown() As Long (or Integer)

This function is called when the user program is unloaded from memory. Shutdown
should return a value of 0 on success and a nonzero value on failure. The return value
is currently ignored in MetaMorph but in the future it may be used.

Continued on next page

Page 10 Visual Basic Reference Guide MetaMorph

1.4 Visual Basic and User Programs, continued

Class modules Note: the Class modules section below applies only to Visual Basic versions 5 and 6.

It does NOT apply either version of Visual Studio .NET.

All of the above functions and variables must be in a Class Module named
UserMethods.

To access the MM variable from other modules, you must declare a Public Variant in
one of the other modules, and then in Startup and DoCommand, use Set to assign
MM to that variable. For example, suppose your program consists of the Class
Module UserMethods, and two regular Modules, Mod1 and Mod2:
Mod1:
 Public pubMM As Variant

UserMethods:
 Public MM as MMAppLib.UserCall

 Function Startup(cmdLine As String) As Long
 DoCommand cmdLine
 End Function

 Function DoCommand(cmdLine As String) As Long
 Set pubMM = MM

 Doit
 End Function

Mod2:
 Function Doit
 Dim i As Long

 pubMM.GetCurrentImage i
 End Function

You see that pubMM is visible to the whole program. Set must be used for the
assignment, since MM is a variant. If Set is not used, problems will occur.

MetaMorph Visual Basic Reference Guide Page 11

1.5 Creating a User Program

Introduction Note: The following versions of Microsoft Visual Basic can be used to create

programs to run in MetaMorph 7.0:

 Microsoft Visual Basic .NET 2008 Professional or Enterprise editions
 Microsoft Visual Basic .NET 2005 Professional or Enterprise editions
 Microsoft Visual Basic .NET 2003 Professional or Enterprise editions
 Microsoft Visual Basic .NET 2002 Professional or Enterprise editions
 Microsoft Visual Basic 6.0 Professional or Enterprise editions
 Microsoft Visual Basic 5.0 Professional or Enterprise editions

Note that the Standard and Express editions of the above versions are NOT supported.

Note One limitation of user programs written in Visual Basic versions 5 and 6 must be

noted: because of the manner in which the programs run, the user will not be able to
use non-modal dialog boxes. That is, you will be able to work in only one command
dialog box at a time. Any attempt to run a program with non-modal dialog boxes will
return an error message from the Visual Basic runtime controller.

Visual Studio .NET enables the use of non-modal dialog boxes; however, their use
has not been tested with the MetaMorph software and they are not supported by
Molecular Devices. Use at your own risk.

Creating a user
program with
Visual Basic
.NET

To create the framework for a user program using Microsoft Visual Basic .NET, use
one of the procedures presented in the following tables.

Table 1.1 Creating a User Program with Visual Basic .NET 2005 or 2008

Step Action

1 Open Visual Studio and create a new project of type Visual Basic: Class Library.

2 Select My Project in the Solution Explorer
Select the App Tab and Press “Assembly Info” button
Check off “MakeAssemblyCom – visible
Press OK

3 Select the References Tab and click “Add” button
Select COM Tab. Find the MetaMorph Type Library and select it.
Press OK

- Adds MetaMorph to the Reference List

4 In the Solution Explorer, choose the project and right click on it
Choose Add > New Item
Choose “module” and click Add

5 Add the code in Figure 1.2 (below) to Module1.vb.

6 Add any code for your VB application.

Page 12 Visual Basic Reference Guide MetaMorph

7 If deploying this user program to multiple computers with MetaMorph, you must
perform the following:

1. In Solution Explorer, highlight the solution, right click on it and
choose Add > New Project

2. Find and choose “set up project” and press OK
3. Right click on the set up project and choose Add > Project Output
4. Choose the name of your project from the drop down menu
5. Select Primary Out from the list in the window
6. Choose Configure > Release
7. Press OK

8 From the list of Detected Dependencies, choose “mmapp.exe” and right click on it.
Select “Exclude”

9 Under the Build menu, select Build Solution. Once the program has been compiled
without any errors, it is ready to be run from the MetaMorph application

Note The default condition for .NET 2005/2008 for Assembly Name and Root Namespace

MUST be the same as the project name. DO NOT CHANGE these names or this will
not work with the MetaMorph application.

Table 1.2 Creating a User Program with Visual Basic .NET 2002 or 2003

Step Action

1 Open Visual Studio and create a new project of type Visual Basic: Windows
Application.

2 Add the following lines to the AssemblyInfo.vb file:

<Assembly: ComVisible(True)>

<Assembly: ClassInterface(ClassInterfaceType.AutoDual)>

3 From the Project menu, choose Properties, and go to the General pane in the
window that appears (it should start with the General pane automatically).

4 Bring up the properties for the project, select Common Properties, General. Under
Output Type, select Class Library. Under Root Namespace, type in the name you
want to appear in MetaMorph in the Run User Program dialog for your project.

Note that if you are running Visual Basic.NET Standard Edition, you will not have a
Class Library option. In this case, close Visual Studio, and open the folder that
contains your project. Find the file with the .vbproj extension and edit it using
Notepad. Change the line that says

OutputType = “WinEXE” to OutputType = “Library”

Change the line that says

StartupObject = “YourApplicationName.YourFormName” to
StartupObject = “”

Save the changes and close the file. Now start up Visual Studio again and
continue with these steps.

5 Bring up the properties for the project, select Configuration Properties, then Build.
Check the Register for COM Interop checkbox.

MetaMorph Visual Basic Reference Guide Page 13

6 On the Project menu, select Add Reference, select the COM pane, click the
Browse button, and find your MMApp.exe file and select it. Then click OK to close
the Add Reference window.

7 Add the code in Figure 1.2 (below) to Module1.vb.

8 Add any code for your VB application.

9 Under the Build menu, select Build Solution. Once the program has been compiled
without any errors, it is ready to be run from MetaMorph

Page 14 Visual Basic Reference Guide MetaMorph

 Figure 1.2 Module1.vb Code Addition
Option Strict Off
Option Explicit On

Public Interface IUserMethods
 Property mm() As MMAppLib.UserCall
 Property gParentWnd() As Integer
 Property gUserID() As Integer

 Function Startup(ByRef cmdLine As String) As Integer
 Function Docommand(ByRef cmdLin As String) As Integer
 Function Shutdown() As Integer
End Interface

<ComClass(UserMethods.ClassId, UserMethods.InterfaceId)> _
Public Class UserMethods
 Implements IUserMethods
 Private mygParentWnd As Integer
 Private mygUserID As Integer
 Public mymm As MMAppLib.UserCall

 Public Const ClassId As String = "832F34A5-5CF5-403f-B4A8-428C8351FD02"
 Public Const InterfaceId As String = "3D8B5BA4-FB8C-5ff8-8468-
11BF6BD5CF91"

 Property mm() As MMAppLib.UserCall Implements IUserMethods.mm
 Get
 Return mymm
 End Get
 Set(ByVal Value As MMAppLib.UserCall)
 mymm = Value
 End Set
 End Property
 Property gParentWnd() As Integer Implements IUserMethods.gParentWnd
 Get
 Return mygParentWnd
 End Get
 Set(ByVal Value As Integer)
 mygParentWnd = Value
 End Set
 End Property
 Property gUserID() As Integer Implements IUserMethods.gUserID
 Get
 Return mygUserID
 End Get
 Set(ByVal Value As Integer)
 mygUserID = Value
 End Set
 End Property

 Public Function Startup(ByRef cmdLine As String) As Integer Implements
IUserMethods.Startup
 Docommand(cmdLine)
 End Function

 Public Function Docommand(ByRef cmdLine As String) As Integer Implements
IUserMethods.Docommand
 End Function

 Public Function Shutdown() As Integer Implements IUserMethods.Shutdown
 End Function
End Class

MetaMorph Visual Basic Reference Guide Page 15

1.5 Creating a User Program, continued

Creating a user
program with
Visual Basic 5.0
or 6.0

To create the framework for a user program using Microsoft Visual Basic version 5.0
or 6.0, use the procedure presented in the following table.

Table 1.3 Creating a User Program with Visual Basic 5.0 or 6.0

Step Action

1 Start the Microsoft Visual Basic program and create a new project by choosing
New Project from the File menu.

2 For the type of project to create, select ActiveX DLL.

3 From the Project menu, choose Properties, and go to the General pane in the
window that appears (it should start with the General pane automatically).

4 From the Startup Object drop-down list, select Sub Main.

5 In the Project Name text box, type the name you want to appear in MetaMorph
when selecting a user program to run.

6 For Project Description, type the description that you want to appear in
MetaMorph when selecting a user program to run.

Note: The project description is not currently recognized by MetaMorph when
using VB 5.0/6.0. MetaMorph will display the Project Name in the Run User
Program dialog box.

7 Choose OK.

8 From the View menu, choose Properties Window.

Continued on next page

Page 16 Visual Basic Reference Guide MetaMorph

1.5 Creating a User Program, continued

Creating a user program with Visual Basic 5.0 or 6.0 or 6.0
(continued)

Step Action

9 In the Properties window that appears,

• Set Instancing to 5 – MultiUse, and
• Set (Name) to UserMethods.

10 From the Project menu, choose References. Then find MetaMorph Type Library
in the list and select its check box. If you don’t see MetaMorph Type Library,
choose the Browse button, select Files of Type Executable, navigate to your
MetaMorph directory, and select MMAPP.EXE.

11 Once MetaMorph Type Library has been selected, you can choose Object
Browser from the View menu and select MMAppLib from the top drop-down list.
Then select UserCall from the Classes list and you will get a list of all the
available functions in MetaMorph that you can call with the MM variable, along
with their parameters. When you start to type the name of the object in the
module window, a list will appear on the screen with all of the available functions
for that object, along with their parameters.

12 In the Class Module UserMethods section, insert the code shown in Fig. 1.3,
which follows this procedure.

13 From the Project menu, choose Add Module.

14 In the module you just inserted, add the following code:
Sub Main()

End Sub

Compiling the
user program

That’s the framework for your program. You can now add your personal code to the
program, as described in Section 1.4. When you have finished, you are ready to
compile your program. From the File menu, choose Make YourProjectName. You
can select a name and location for your compiled program, but note that the name you
select in this dialog will not be the name that you will use to reference your program
in MetaMorph. In MetaMorph, your program will be referenced by the name or
description you entered in the Project Name text box (Step 5 in table 1.2). Once the
program has been compiled without any errors, it is ready to be run from MetaMorph.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 17

1.5 Creating a User Program, continued

Figure 1.3 Class Module UserMethods Section Code

Option explicit

Public gUserID As Long
Public gParentWnd As Long
Public MM As MMAppLib.UserCall

Public Function Startup(cmdLine As String) As Long

End Function

Public Function DoCommand(cmdLine As String) As Long

End Function

Public Function Shutdown() As Long

End Function

Page 18 Visual Basic Reference Guide MetaMorph

1.6 Data Types and Arrays

Introduction Visual Basic functions in MetaMorph frequently make use of arrays to handle image

pixel data, such as edgelist coordinates and intensity or color values. There is a
complex interplay between the size of an array, the image bit-depth, and the type of
data (Byte, Integer, or Long) being passed. The number of elements in the array and
the range of data that can be stored will be determined by both the bit-depth of the
image (1, 8, 16, or 24) and by the data type.

Data Types
and Arrays

 The following table indicates the number of elements in the array as a function of the
image depth, data depth, and data type.

Table 1.3 Data Types and Arrays

Image Bit-Depth Data Bit-Depth Data Type # Elements in Array

1 1 Byte number of pixels / 8

 Integer number of pixels / 16

 Long number of pixels / 32

 8 Byte number of pixels1

 16 Integer number of pixels2

1 24 Long number of pixels3

8 1 same as for 1-bit images4

 8 Byte number of pixels

 16 Integer number of pixels

 24 Long number of pixels3

16 1 same as for 1-bit images4

 8 Byte number of pixels5

 16 Integer number of pixels

 24 Long number of pixels6

Continued on next page

MetaMorph Visual Basic Reference Guide Page 19

1.6 Data Types and Arrays, continued

Data Types and Arrays
(continued)

Image Bit-Depth Data Bit-Depth Data Type # Elements in Array

24 1 same as for 1-bit images4

 8 Byte number of pixels7

 16 Integer number of pixels7

 24 Long number of pixels

 1 Pixel values will be converted to 0 or 255.
 2 Pixel values will be converted to 0 or 65535.
 3 Each pixel’s values will be packed into three bytes, but each of the 32-bit elements in the array will contain
 four bytes of data such that element one will contain the three values (red, green, blue) of pixel one and the
 first value of pixel two, the second element will contain the next two values for pixel two and the first two
 values of pixel three, and so on. Data from 1-bit (binary) images will be expressed as values of 0,0,0 or
 255,255,255. Data from 8-bit images will be expressed as a triplet of the pixel value (Value,Value,Value).
 Data from 16-bit images will be expressed as a triplet of the low byte value of the pixel (Low,Low,Low).
 4 Pixel values will be converted to 0 or 1.
 5 Only the low byte of each pixel will be stored.
 6 Only the low byte from each of the three values (red, green, blue) will be stored.

 7 Only the intensity value will be stored. This value will be a numeric average of the red, green, and blue
 intensities.

Page 20 Visual Basic Reference Guide MetaMorph

Chapter 2 − Performing Serial and Digital I/O Communication

2.1 Overview

Introduction Peripheral devices can be controlled from within MetaMorph by a number of user

program functions. This chapter describes two types of functions used for
communication with a peripheral device—those that send and receive data streams
over a serial port and those that control a digital device.

In this chapter This chapter contains the following topics:

Topic See Page

Performing Serial Data Transmission 21

Communicating with a Digital I/O Device 26

MetaMorph Visual Basic Reference Guide Page 21

2.2 Performing Serial Data Transmission

Introduction You can control some devices such as VCRs by sending and receiving sequential

streams of data over a serial port. A pair of Visual Basic functions, SendSerialData
and WaitForSerialData, can perform the sending and receiving procedures. You will
need to install the CUSTOMIO drop-in with the MetaMorph Drop-in Manager and to
install and configure a Data Stream MetaDevice before you can take advantage of
these two functions. This section describes the two functions, and provides a list of
the syntax rules and a table of the serial command codes that are used for serial
communication.

SendSerialData

Description Carries out the Custom I/O: Send Serial Data command, which sends a sequential

stream of data from the computer to another device via a serial port.

Syntax SendSerialData(sData As String, lTimeout As Long, bSendWithEcho As Boolean)

As Long

Remarks This function is a shortcut to the “Send Serial Data” function of the MetaMorph

CUSTOMIO drop-in, which provides control over devices that use Data Stream
MetaDevices. SendSerialData runs without displaying a dialog box. The
CUSTOMIO drop-in must be loaded for this function to run.

Parameters sData Gives the string to be sent to the serial port.

lTimeout Specifies a maximum time, in seconds, that MetaMorph should wait if no
echo has been returned before continuing.

bSendWithEcho Determines whether or not MetaMorph is to wait for an echo from
the serial device before sending the next character and to warn you if the character is
not received. If bSendWithEcho is set to TRUE, MetaMorph will wait until the device
returns an echo, or until lTimeout seconds have transpired, whichever comes first. If
bSendWithEcho is set to FALSE, MetaMorph will return immediately.

Example ' Send the string "TestString" to the serial port with a

' timeout of 5. Do not return until the string has been
' echoed or the timeout has expired.
MM.SendSerialData "TestString", 5, TRUE

See also: WaitForSerialData

Continued on next page

Page 22 Visual Basic Reference Guide MetaMorph

2.2 Performing Serial Data Transmission, continued

WaitForSerialData

Description Carries out the Custom I/O: Wait for Serial Data command, which waits for a

sequential stream of data from another device by way of a serial port.

Syntax WaitForSerialData(sData As String, lTimeout As Long, bLogData As Boolean,

sLogFormat As String) As Long

Remarks This function is a shortcut to the “Wait for Serial Data” function of the MetaMorph

CUSTOMIO drop-in, which provides control over devices that use Data Stream
MetaDevices. It runs without displaying a dialog. The CUSTOMIO drop-in must be
loaded for this function to run.

Parameters sData Specifies the string from the serial port for which to wait.

lTimeout Specifies the number of seconds WaitForSerialData will wait for the
string before returning.

bLogData Determines whether or not the received string will be written to a log file.
If bLogData is set to TRUE and the string that is received matches the one specified
in sData, the message that you specify with sLogFormat will be written to the log file
(assuming it is open).

sLogFormat Specifies a message that will be sent to an open log file if the string that
is received matches the one specified in sData and bLogData has been set to TRUE.

Example ' Wait for 10 seconds for the string "ok" from the serial port.

' Don't log it to the data file.
MM.WaitForSerialData "ok", 10, FALSE, ""

See also: SendSerialData

Continued on next page

MetaMorph Visual Basic Reference Guide Page 23

2.2 Performing Serial Data Transmission, continued

Syntax rules
for serial data
transmission

Table 2.1 describes the syntax rules for the command codes used in serial
communication. Be sure to consult Table 2.2 for the codes themselves.

Table 2.1 Syntax Rules for Serial Data Transmission

Code Result

$ “Escape” character, which is ASCII 027 in decimal.

^A thru ^Z “Control” character, which is ASCII 001 for ^A through ASCII 26 for ^Z.

\c Sends the character after the slash. In this example, the character “c”
would be sent. Useful for sending ^, \, or $ characters.

\ddd Sends ASCII digits in decimal.
EXAMPLE: \192.

\xdd Sends ASCII digits in hexadecimal.
EXAMPLE: \x27.

(dddd) Delays for specified number of milliseconds.
EXAMPLE: (1000)

Continued on next page

Page 24 Visual Basic Reference Guide MetaMorph

2.2 Performing Serial Data Transmission, continued

ASCII control
codes

The following table provides the code strings used in serial communication.

Table 2.2 ASCII Control Codes

 Hex Dec Key Name Description

 00 0 ^@ NUL Null

 01 1 ^A SOH Start of Header

 02 2 ^B STX Start of Text

 03 3 ^C ETX End of Text

 04 4 ^D EOT End of Transmission

 05 5 ^E ENQ Inquiry

 06 6 ^F ACK Acknowledge

 07 7 ^G BEL Bell

 08 8 ^H BS Backspace

 09 9 ^I HT Horizontal Tab

 0A 10 ^J LF Line Feed

 0B 11 ^K VT Vertical Tab

 0C 12 ^L FF Form Feed

 0D 13 ^M CR Carriage Return

 0E 14 ^N SO Shift Out

 0F 15 ^O SI Shift In

 10 16 ^P DLE Data Link Escape

 11 17 ^Q DC1 Device Control 1

 12 18 ^R DC2 Device Control 2

 13 19 ^S DC3 Device Control 3

 14 20 ^T DC4 Device Control 4

 15 21 ^U NAK Negative Acknowledge

 16 22 ^V SYN Synchronous Idle

Continued on next page

MetaMorph Visual Basic Reference Guide Page 25

2.2 Performing Serial Data Transmission, continued

ASCII control codes
(continued)

 Hex Dec Key Name Description

 17 23 ^W ETB End Transmission Block

 18 24 ^X CAN Cancel

 19 25 ^Y EM End of Medium

 1A 26 ^Z SUB Substitute

 1B 27 ESC Escape

 1C 28 FS File Separator

 1D 29 GS Group Separator

 1E 30 RS Record Separator

 1F 31 US Unit Separator

Page 26 Visual Basic Reference Guide MetaMorph

2.3 Communicating with a Digital I/O Device

Introduction MetaMorph allows you to control digital devices by sending and receiving TTL-level

voltage signals through a parallel port or with the use of a digital I/O board. To do so
with a user program, you will need to install the CUSTOMIO drop-in with the
MetaMorph Drop-in Manager and to install and configure a Digital I/O MetaDevice.

DIGetFirst

Description Obtains the handle of the first Digital I/O MetaDevice in the current list of Digital I/O

MetaDevices.

Syntax DIGetFirst(hRetDevice As Long) As Long

Return values hRetDevice Returns the handle of the first Digital I/O MetaDevice in the current list.

If there are no Digital I/O MetaDevices, hRetDevice will return a value of -1.

Example ' 'dev' will hold the device handle

Dim dev As Long

' get the handle of the first device and put it in 'dev'
MM.DIGetFirst dev

See also: DIGetNext

DIGetIOStatus

Description Determines whether a specified I/O line of the given device is an input line or an

output line.

Syntax DIGetIOStatus(hDevice As Long, nLineNumber As Integer, nRetInOut As Integer)

As Long

Parameters hDevice Specifies the handle of the device.

nLineNumber Specifies the number of the I/O line in question. This number will
correspond to the pin number on the line’s connector.

Return values nRetInOut Returns a value corresponding to whether the specified line is an input

line or an output line. If it is an input line, a value of 0 will be returned. If it is an
output line, a value of 1 will be returned.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 27

2.3 Communicating with a Digital I/O Device, continued

DIGetIOStatus
(continued)

Example Dim dev As Long

Dim inout As Integer

' Get the IO status of line 2 of a device and place it in
' 'inout'. 'dev' must have been previously obtained using
' DIGetFirst or DIGetNext
MM.DIGetIOStatus dev, 2, inout

See also: DIGetFirst, DIGetLineCount, DIGetNext

DIGetLineCount

Description Obtains the number of I/O lines for a given device.

Syntax DIGetLineCount(hDevice As Long, nRetLines As Integer) As Long

Parameters hDevice Specifies the handle of the device.

Return values nRetLines Returns the number of I/O lines.

Example Dim dev As Long

Dim numLines As Integer

' Get the number of lines on a device and place it in
' 'numlines'. 'dev' must have been previously obtained using
' DIGetFirst DIGetNext or
MM.DIGetLineCount dev, numLines

See also: DIGetFirst, DIGetNext

Continued on next page

Page 28 Visual Basic Reference Guide MetaMorph

2.3 Communicating with a Digital I/O Device, continued

DIGetLineState

Description Obtains the state of a specified I/O line (Low vs. High).

Syntax DIGetLineState(hDevice As Long, nLineNumber As Integer, nRetState As Integer)

As Long

Parameters hDevice Specifies the handle of the device.

nLineNumber Specifies the number of the I/O line in question. This number will
correspond to the pin number on the line’s connector.

Return values nRetState Returns a value corresponding to the state of the I/O line. If the line is

Low, a value of 0 will be returned. If the line is High, a value of 1 will be returned.

Example Dim dev As Long

Dim state As Integer

' Get the line state of line 1 of a device and place it in
' 'state'. 'dev' must have been previously obtained using
' DIGetFirst or DIGetNext.
MM.DIGetLineState dev, 1, state

See also: DIGetFirst, DIGetNext

DIGetName

Description Obtains the name of the MetaDevice whose handle you pass to it.

Syntax DIGetName(hDevice As Long, sDeviceName As String) As Long

Parameters hDevice Specifies the handle of the device.

Return values sDeviceName Returns the name of the selected MetaDevice. This will be given as a

text string.

Example Dim dev As Long

Dim name As String

' Get the name of a device and place it in 'name'. 'dev' must
' have been previously obtained using DIGetFirst or DIGetNext.
MM.DIGetName dev, name

See also: DIGetFirst, DIGetNext

Continued on next page

MetaMorph Visual Basic Reference Guide Page 29

2.3 Communicating with a Digital I/O Device, continued

DIGetNext

Description Obtains the handle of the Digital I/O MetaDevice that follows the last one that was

read (using either DIGetNext or DIGetFirst).

Syntax DIGetNext(hRetDevice As Long) As Long

Return values hRetDevice Returns the handle of the Digital I/O MetaDevice that follows the last

one read. If there are no more Digital I/O MetaDevices, hRetDevice will return a
value of -1.

Example Dim dev As Long

' Get the third device and place it in 'dev'.

' Get the first device
MM.DIGetFirst dev
' Get the device after the first device (the second device).
MM.DIGetNext dev
' Get the device after the second device.
MM.DIGetNext dev

See also: DIGetFirst

SetDigitalIO

Description Carries out the Custom I/O: Set Digital I/O command, which controls a peripheral

digital I/O device by sending signals to it from MetaMorph.

Syntax SetDigitalIO(lBitsToSet As Long, lState As Long) As Long

Remarks This function is a shortcut to the “Set Digital I/O” function of the MetaMorph

CUSTOMIO drop-in. It runs without displaying a dialog box. The CUSTOMIO drop-
in must be loaded for this function to run.

Parameters lBitsToSet Provides a 32-bit binary bit pattern that indicates which digital I/O lines

will be active. For example, if bit 3 of lBitsToSet is set to 1, digital I/O line 3 will be
enabled to write to the device. If it is set to 0, line 3 will be disabled from writing.

lState Provides a 32-bit binary bit pattern that sets the state (High vs. Low) of each
I/O line identified by the bit pattern in lBitsToSet. To continue the preceding example,
if bit 3 of lState is set to 0 and lBitsToSet has assigned a value of 1 to bit 3, this will
set the line state for bit 3 to Low. If lState assigns a value of 1 to bit 3, this will set the
line state for bit 3 to High. If lBitsToSet has assigned a value of 0 to bit 3, the setting
of bit 3 for lState will be ignored, and the line state of bit 3 will be unaffected.

Continued on next page

Page 30 Visual Basic Reference Guide MetaMorph

2.3 Communicating with a Digital I/O Device, continued

SetDigitalIO
(continued)

Example ' Set bits 3 and 4 of the DIO lines High. 24 in binary is

' 00011000 and 255 is 11111111. Since the lState argument had
' ones in all the first 8 lines, it will set to High whichever
' of those lines were selected by the lBitsToSet argument.
MM.SetDigitalIO 24, 255

See also: WaitForDigitalIO

WaitForDigitalIO

Description Carries out the Custom I/O: Wait for Digital I/O command, which configures

MetaMorph to wait for specific signals from a peripheral digital I/O device.

Syntax WaitForDigitalIO(lBitsToRead As Long, lState As Long, lMilliseconds As Long) As

Long

Remarks This function is a shortcut to the “Wait for Digital I/O” function of the MetaMorph

CUSTOMIO drop-in. It runs without displaying a dialog. The CUSTOMIO drop-in
must be loaded for this function to run.

Parameters lBitsToRead Provides a 32-bit binary bit pattern that indicates which bits in lState

will be compared to data read from the I/O lines. For example, if bit 3 of lBitsToRead
is set to 1, WaitForDigitalIO will not return until either digital I/O line 3 matches the
state (High vs. Low) that has been set for bit 3 by lState, or until lMilliseconds have
elapsed—whichever occurs first.

lState Provides a 32-bit binary bit pattern against which the state (High vs. Low) of
each I/O line identified by the bit pattern in lBitsToRead will be compared. To
continue the preceding example, if bit 3 of lState is set to 0 and lBitsToRead has
assigned a value of 1 to bit 3, this will set the condition to wait until line 3 switches to
Low. If lState assigns a value of 1 to bit 3, this will set the condition to wait for line 3
to switch to High.

lMilliseconds Specifies the number of milliseconds to wait before timing out.

Example ' Wait for bits 3, 4, and 7 to be High, Low, and Low,

' respectively. Timeout if this takes longer than 500
' milliseconds. 98 is 10011000 in binary, and 128 is 10000000.
MM.WaitForDigitalIO 98, 128, 500

See also: SetDigitalIO

Chapter 3 − Executing Commands and Journals

3.1 Overview

Introduction Fundamental to the successful deployment of user programs is the ability to set

variables and pass parameters to the functions, and then run the functions.
Occasionally, you will need to determine a function’s handle. You may also want to
use message boxes to provide feedback while running or troubleshooting the program.
This chapter describes the functions you will need for performing all of these
procedures.

WARNING

The parts of the interface that are accessed through the RunFunction,
RunFunctionEx, and SetFunctionVariable functions are subject to change. Care
should be taken when considering whether to use them. These functions should be
used only when there is no alternative way to accomplish your task. Because of this,
and because of the great number of functions and variables, not all of the functions
and variables that can be accessed through the RunFunction and
SetFunctionVariable functions have been documented. Information for individual
functions and their variables will be provided by e-mail on a case-by-case basis. Send
inquiries to: support.dtn@moldev.com .

In this chapter This chapter contains the following topics:

Topic See Page

Executing Commands and Journals 32

MetaMorph Visual Basic Reference Guide Page 31

Page 32 Visual Basic Reference Guide MetaMorph

3.2 Executing Commands and Journals

GetFunctionHandle

Description Obtains the handle of a specified function.

Syntax GetFunctionHandle(sName As String, lRetFunctionHandle As Long) As Long

Remarks You can use the function handles returned by this function when calling

RunFunctionEx and SetFunctionVariable.

Parameters sName Supplies the name of the function.

Return values lRetFunctionHandle Returns the function handle.

Example ' Run the MetaMorph Deinterlace function on the image 'src'.

' Put the odd and even images in 'destOdd' and 'destEven'.
' 'src', 'destOdd', and 'destEven' should have been previously
' set to valid existing images.
Dim deinterHandle As Long
MM.GetFunctionHandle "Deinterlace", deinterHandle
MM.SetFunctionVariable deinterHandle, "imSource", src
MM.SetFunctionVariable deinterHandle, "imDestOdd", destOdd
MM.SetFunctionVariable deinterHandle, "imDestEven", destEven
MM.RunFunctionEx deinterHandle, 1

' Run Deinterlace again, this time using the current desktop
' image as the source. This time, use RunFunction to run the
' function instead of RunFunctionEx.
MM.GetCurrentImage src
MM.RunFunction "Deinterlace", 1

See also: RunFunctionEx, SetFunctionVariable

PrintMsg

Description Displays a configured message in a diagnostic window in MetaMorph.

Syntax PrintMsg(sMessage As String) As Long

Remarks This function is useful for the purposes of debugging. You can print diagnostics in a

message box without pausing execution. The SetPrintMsgSizeAndPosition function
allows you to set properties of the window in which the messages appear.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 33

3.2 Executing Commands and Journals, continued

PrintMsg
(continued)

Parameters sMessage Specifies the message that is to appear in the message box.

Example ' Print the string "Hello" in the print message window. Place

' the window in the upper left corner of the screen and
' make it 100 pixels wide and 30 high.
MM.PrintMsg "Hello"
MM.SetPrintMsgWindowPositionAndSize 1, 1, 100, 30

See also: SetPrintMsgSizeAndPosition

RunFunction

Description Carries out the function named by the function name sFunctionName as if you had

chosen it from a menu.

Syntax RunFunction(sFunctionName As String, nMode As Integer) As Long

Remarks This function differs from RunFunctionEx in its use of the function’s name.

RunFunctionEx uses the function’s handle.

Parameters sFunctionName Specifies the name of the function to be run.

nMode Determines the execution mode. If nMode is 0, the function will run
normally. If nMode is 1, the function will run in journal playback mode—for most
functions this means no user interface will be displayed.

Example ' Run the MetaMorph Deinterlace function on the image 'src'.

MM.GetCurrentImage src
MM.RunFunction "Deinterlace", 1

Continued on next page

Page 34 Visual Basic Reference Guide MetaMorph

3.2 Executing Commands and Journals, continued

RunFunctionEx

Description Carries out the function named by the function handle lFunctionHandle as if you had

chosen it from the menu.

Syntax RunFunctionEx(lFunctionHandle As Long, nMode As Integer) As Long

Remarks This function differs from RunFunction in its use of the function’s handle.

RunFunction uses the function’s name. Function handles are obtained for use with
RunFunctionEx by calling GetFunctionHandle.

Parameters lFunctionHandle Specifies the handle of the function to be run.

nMode Determines the execution mode. If nMode is 0, the function will run
normally. If nMode is 1, the function will run in journal playback mode—for most
functions this means no user interface will be displayed.

Example ' Run the MetaMorph Deinterlace function on the image 'src'.

' Put the odd and even images in 'destOdd' and 'destEven'.
' 'src', 'destOdd', and 'destEven' should have been previously
' set to valid existing images.
Dim deinterHandle As Long
MM.GetFunctionHandle "Deinterlace", deinterHandle
MM.SetFunctionVariable deinterHandle, "imSource", src
MM.SetFunctionVariable deinterHandle, "imDestOdd", destOdd
MM.SetFunctionVariable deinterHandle, "imDestEven", destEven
MM.RunFunctionEx deinterHandle, 1

See also: GetFunctionHandle

Continued on next page

MetaMorph Visual Basic Reference Guide Page 35

3.2 Executing Commands and Journals, continued

RunJournal

Description Runs the specified journal.

Syntax RunJournal(sPath As String) As Long

Remarks sPath should contain the full path of the journal along with the extension, “.jnl”.

Parameters sPath Specifies the path and name of the journal to be run.

Example ' Run a journal named 'closeall.jnl' that resides in the

' directory C:\MM\Journals.
MM.RunJournal "c:\mm\journals\closeall.jnl"

SetFunctionVariable

Description Sets the value of a variable in a MetaMorph function.

Syntax SetFunctionVariable(lFunctionHandle As Long, sVariableName As String, value As

Variant) As Long

Remarks You can obtain the handle of the function whose variable you want to set by using

GetFunctionHandle.

Parameters lFunctionHandle Gives the handle of the function whose variable you want to set.

sVariableName Gives the name of the function’s variable that you want to set.

value Specifies the new value of the variable—this must be of the same data type as
the variable you are setting.

Continued on next page

Page 36 Visual Basic Reference Guide MetaMorph

3.2 Executing Commands and Journals, continued

SetFunctionVariable
(continued)

Example ' Run the MetaMorph Deinterlace function on the image 'src'.

' Put the odd and even images in 'destOdd' and 'destEven'.
' 'src', 'destOdd', and 'destEven' should have been previously
' set to valid existing images.
Dim deinterHandle As Long
MM.GetFunctionHandle "Deinterlace", deinterHandle
MM.SetFunctionVariable deinterHandle, "imSource", src
MM.SetFunctionVariable deinterHandle, "imDestOdd", destOdd
MM.SetFunctionVariable deinterHandle, "imDestEven", destEven
MM.RunFunctionEx deinterHandle, 1

' Run Deinterlace again, this time using the current desktop
' image as the source. This time, use RunFunction to run the
' function instead of RunFunctionEx.
MM.GetCurrentImage src
MM.RunFunction "Deinterlace", 1

See also: GetFunctionHandle

SetPrintMsgWindowPositionAndSize

Description Sets the position and size of the window used by PrintMsg to display messages.

Syntax SetPrintMsgWindowPositionAndSize(nXPos As Integer, nYPos As Integer, nXSize

As Integer, nYSize As Integer) As Long

Parameters nXPos Specifies the X-coordinate for placement of the upper left corner of the

message box.

nYPos Specifies the Y-coordinate for placement of the upper left corner of the
message box.

nXSize Specifies the width of the message box, in pixels.

nYSize Specifies the height of the message box, in pixels.

Example ' Print the string "Hello" in the print message window. Place

' the window in the upper left corner of the screen and
' make it 100 pixels wide and 30 high.
MM.PrintMsg "Hello"
MM.SetPrintMsgWindowPositionAndSize 1, 1, 100, 30

See also: PrintMsg

Continued on next page

MetaMorph Visual Basic Reference Guide Page 37

3.2 Executing Commands and Journals, continued

SetMMVariable

Description Sets the value of a MetaMorph custom variable or certain writable built in variables.

Syntax SetMMVariable VariableName, value

Parameters VariableName can be any existing or undefined custom variable, or a built in variable

name, such as $Camera.Digital.Exposure$. If it is an undefined custom variable, that
variable will be created. value can be a string or a number. If it is not the same type
as an existing variable, it will not be set.

Examples mm.SetMMVariable “MyComment”, “Experiment number 7”

mm.SetMMVariable “$Camera.Digital.Exposure$”, 1250

See also: GetMMVariable

GetMMVariable

Description Gets the value of an existing MetaMorph custom or built in variable.

Syntax GetMMVariable VariableName, var

Parameters VariableName can be any existing custom variable or a built in variable. var is a VB

variable. If the type of var does not match the type of the MetaMorph variable, it will
try to convert the type before it assigns it. So, for example, the number 123 assigned
to a string will end up as “123”.

Examples Dim planeNum as Integer

mm.GetMMVariable “$Image.ActivePlane$”, planeNum
Dim as S
mm.GetMMVariable “MyComment”, comment

comment tring

See also: SetMMVariable

Page 38 Visual Basic Reference Guide MetaMorph

Chapter 4 − Reading and Manipulating Images and Image
Windows

4.1 Overview

Introduction This chapter deals with the functions that you need for managing image windows and

their properties. These functions will be central to any user program that you create.

In this chapter This chapter contains the following topics:

Topic See Page

Loading, Creating, Copying, and Closing Images 39

Finding Loaded Images 46

Manipulating Image Windows 49

Reading and Using Image Properties 53

MetaMorph Visual Basic Reference Guide Page 39

4.2 Loading, Creating, Copying, and Closing Images

Introduction Image loading, copying, saving, and closing are vital steps in any user program that

you will run in MetaMorph. This section describes the functions that are used for
these procedures. In particular, you will make frequent use of the LoadImage,
SaveImage, and CloseImage functions.

CloneImage

Description Creates a copy of a specified image.

Syntax CloneImage(hImage As Long, hRetNewImage As Long) As Long

Remarks This function differs from CopyImage in that CopyImage requires the existence of a

destination image that will be overwritten. The information that will be copied by
CloneImage includes the image data, the annotation, zoom factor, calibration setting,
thresholding, position, wavelength, scaling, and image times.

Parameters hImage Specifies the handle of the image to be copied.

Return values hRetNewImage Returns the handle for the new image.

Example ' Create a copy of the current desktop image and place it in

' 'dest'
Dim src dest As Long As Long,
MM.GetCurrentImage src
MM.CloneImage src, dest

See also: CopyImage, GetCurrentImage (Section 4.3), GetImage (Section 4.3)

Continued on next page

Page 40 Visual Basic Reference Guide MetaMorph

4.2 Loading, Creating, Copying, and Closing Images, continued

CloseImage

Description Closes a specified image and removes it from the desktop.

Syntax CloseImage(hImage As Long) As Long

Remarks If the image contains unsaved information, you will be prompted before the image is

closed. In this regard, CloseImage differs from ForceCloseImage, which will close a
modified image even if it has not been saved first. This function does not affect any
disk-based copies of the image.

Parameters hImage Specifies the handle of the image to be closed.

Example ' Close the current desktop image

Dim src As Long
MM.GetCurrentImage src
MM.CloseImage src

See also: ForceCloseImage, GetCurrentImage (Section 4.3), GetImage (Section 4.3)

CopyImage

Description Copies a source image, hSourceImage, over a destination image, hDestImage.

Syntax CopyImage(hSourceImage As Long, hDestImage As Long) As Long

Remarks This function differs from CloneImage in that CopyImage requires the existence of a

destination image, hDestImage, that will be overwritten. Only the image data,
annotation, Z-position, wavelength, and image times are copied.

Parameters hSourceImage Specifies the handle of the source image to be copied.

hDestImage Specifies the handle of the destination image to be overwritten.

Example ' Copy the current desktop image to an existing image named

' "Temp"
Dim src dest As Long As Long,
MM.GetCurrentImage src
MM.GetNamedImage "Temp", dest
MM.CopyImage src, dest

See also: CloneImage, GetCurrentImage (Section 4.3), GetImage (Section 4.3)

Continued on next page

MetaMorph Visual Basic Reference Guide Page 41

4.2 Loading, Creating, Copying, and Closing Images, continued

CopyImagePlane

Description Copies a specified source image plane to the current plane in a specified destination

image.

Syntax CopyImagePlane(hSourceImage As Long, hDestImage As Long, nSrcPlane As

Integer) As Long

Remarks Plane numbering starts at 0. The information that will be copied includes the image

data, the annotation, zoom factor, calibration setting, thresholding, position,
wavelength, scaling, and image times.

Parameters hSourceImage Specifies the handle of the source image.

hDestImage Specifies the handle of the destination image into which the plane will
be copied.

nSrcPlane Specifies the number of the plane that will be copied.

Example ' Copy the first plane of the current image to the current

' plane of an existing image named "Stack".
Dim src As Long, dest As Long
MM.GetCurrentImage src
MM.GetNamedImage "Stack", dest
MM.CopyImagePlane src, dest, 0

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3)

CreateImage

Description Creates a new image, using a specified name, size, and bit-depth.

Syntax CreateImage(width As Integer, height As Integer, depth As Integer, name As String,

hRetNewImage As Long) As Long

Remarks The SetDisplayedImagesWhenCreated function sets whether or not images will be

automatically drawn on the screen when they are created. If you set its bState
parameter to FALSE, the image will not appear on the screen when CreateImage is
called, although the image will still be created. This may be useful for performing
intermediate work on a temporary work image. In this case, you will need to use
ShowImage to force the undisplayed image to be displayed.

Continued on next page

Page 42 Visual Basic Reference Guide MetaMorph

4.2 Loading, Creating, Copying, and Closing Images, continued

CreateImage
(continued)

Parameters width Specifies a width (X-axis size), in pixels, for the new image.

height Specifies a height (Y-axis size), in pixels, for the new image.

depth Specifies a bit-depth for the new image. This must be 1, 8, 16, or 24.

name Specifies a name for the new image. If an image with that name already exists,
“-1” will be appended to the name of the new image.

Return values hRetNewImage Returns the handle of the new image.

Example ' Create a 512 x 480 pixel 8-bit image named "myimage" and

' place it in 'im'.
Dim im As Long
MM.CreateImage 512, 480, 8, "myimage", im

See also: SetDisplayImagesWhenCreated, ShowImage

ForceCloseImage

Description Closes a specified image and removes it from the desktop.

Syntax ForceCloseImage(hImage As Long) As Long

Remarks If the image has not been saved, it will be deleted anyway, and you will lose any

unsaved information. In this regard, ForceCloseImage differs from CloseImage,
which will prompt you to save a modified image before closing it. This function does
not affect any disk-based copies of the image.

Parameters hImage Specifies the handle of the image to be closed.

Example ' Close the current desktop image even if it has not yet been

' saved to disk.
Dim im As Long
MM.GetCurrentImage im
MM.ForceCloseImage im

See also: CloseImage, GetCurrentImage (Section 4.3), GetImage (Section 4.3)

Continued on next page

MetaMorph Visual Basic Reference Guide Page 43

4.2 Loading, Creating, Copying, and Closing Images, continued

LoadImage

Description Loads a specified image file.

Syntax LoadImage(sFileName As String, hRetImage As Long) As Long

Parameters sFileName Specifies the name of the image to be loaded. This should contain the

complete path of the image.

Return values hRetImage Returns the handle of the loaded image.

Example ' Load the image stack Nerve.stk which is stored in the

' directory C:\MM\Images, and place it in nerveIm.
MM.LoadImage "c:\mm\images\nerve.stk", nerveIm

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3)

SaveImage

Description Saves the specified image to a file on the hard disk.

Syntax SaveImage(hImage As Long, sFileName As String, bPartial As Boolean, nFormat

As Integer) As Long

Remarks nFormat is a numeric value which denotes the format in which the image is to be

saved. This value may be any of the following:

 1 Image-1 File Type (*.img)
 2 Windows File Type (*.bmp)
 3 TIFF File Type (*.tif)
 4 Stack File Type (*.stk)
 5 MRC-500 File Type (*.pic)
 6 Photometrics CC200 File Type (*.cc2)
 7 Hamamatsu File Type (*.ham)
 8 RGB TIFF File Type (*.tif)
 9 WinView File Type (*.spe)
 10 Argus File Type (*.ham)

Continued on next page

Page 44 Visual Basic Reference Guide MetaMorph

4.2 Loading, Creating, Copying, and Closing Images, continued

SaveImage
(continued)

Parameters hImage Specifies the handle of the image to be saved.

sFileName Gives the name to be used for the image being saved. This should include
the full path.

bPartial For an image with an active region of interest, this Boolean logic variable
specifies whether only the image inside the region is to be saved (TRUE) or if the
whole image is to be saved regardless of the presence of an active region (FALSE). If
there is no active region, the whole image will be saved.

nFormat Supplies a numeric value that indicates what format the image is to be
saved. (See Remarks.)

Example ' Save the current desktop image as a TIFF file named

' Newimage.tif in the directory C:\MM\Images.
Dim currentIm As Long
MM.GetCurrentImage currentIm
MM.SaveImage currentIm, "c:\mm\images\newimage.tif", FALSE, 3

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3)

SetDisplayImagesWhenCreated

Description Configures whether or not images are to be drawn automatically on the screen when

they are created.

Syntax SetDisplayImagesWhenCreated(bState As Boolean) As Long

Remarks SetDisplayedImagesWhenCreated sets Use ShowImage to force an undisplayed

image to be displayed.

Parameters bState This Boolean logic variable specifies whether created images are to be

displayed (TRUE) or kept hidden (FALSE). If bState is set to FALSE when
CreateImage or other functions are called which create an image, the image will be
created, but will not appear on the screen. This is useful for performing intermediate
work on a temporary work image which you don’t necessarily want to see. If bState is
set to TRUE, new images will be displayed upon creation.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 45

4.2 Loading, Creating, Copying, and Closing Images, continued

SetDisplayImagesWhenCreated
(continued)

Example ' Create an image and do some operations on it. Don't let the

' user see the image until all the operations are done.
MM.SetDisplayImagesWhenCreated FALSE
Dim im As Long
MM.CreateImage 512, 480, 8, "temp", im

' Do some operations on 'im'
' Cause 'im' to appear on the screen
MM.ShowImage im, 236

' Reset state so images are once again displayed as soon as
' they are created
MM.SetDisplayImagesWhenCreated TRUE

See also: CreateImage

ShowImage

Description Causes the specified image to be displayed, if it is not already being displayed.

Syntax ShowImage(hImage As Long, nPalEntries As Integer) As Long

Parameters hImage Specifies the handle of the image to be displayed.

nPalEntries Gives the number of palette entries to use in displaying the image: 2, 4,
8, 16, 32, 64, 128, or 236.

Example ' Create an image and do some operations on it. Don't let the

' user see the image until all the operations are done.
MM.SetDisplayImagesWhenCreated FALSE
Dim im As Long
MM.CreateImage 512, 480, 8, "temp", im

' Do some operations on 'im'
' Cause 'im' to appear on the screen
MM.ShowImage im, 236

' Reset state so images are once again displayed as soon as
' they are created
MM.SetDisplayImagesWhenCreated TRUE

See also: GetCurrentImage, GetImage

Page 46 Visual Basic Reference Guide MetaMorph

4.3 Finding Loaded Images

Introduction The next set of functions are crucial for control of the procedures being carried out by

your user program. These functions are used for finding an image’s handle, the
“indexing tag” that both Visual Basic and MetaMorph use to keep track of the image,
as well as for determining how many images are loaded and whether a handle is
currently in use. The GetCurrentImage and GetImage functions, which obtain an
image’s handle, are particularly important, and you will see these two functions
referenced frequently in the “See Also” lists throughout this manual.

GetCurrentImage

Description Returns the handle of the currently active image.

Syntax GetCurrentImage(hRetImage As Long) As Long

Remarks A handle is a unique number used by MetaMorph to keep track of the appropriate

image while working with it. This number is used extensively as a variable by most of
the MetaMorph Visual Basic functions in this manual. The current (active) image is
the one at the front of all the loaded images.

Return values hRetImage Returns the handle of the current image.

Example ' Get the current desktop image and put it in 'im'

Dim im As Long
MM.GetCurrentImage im

See also: GetImage

GetImage

Description All images loaded in MetaMorph have a unique index number, from 0 to (n – 1),

where n is the number of loaded images. GetImage returns the handle of the image
denoted by nIndex.

Syntax GetImage(nIndex As Integer, hRetImage As Long) As Long

Remarks The image handle is returned in nRetImage. If an error occurs (for example, if nIndex

is not a valid number), nRetImage will contain 0.

Parameters nIndex Gives the index number of the desired image. (See Description.) If an error

occurs (for example, if nIndex is not a valid number), MetaMorph will return a handle
of “0”.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 47

4.3 Finding Loaded Images, continued

GetImage
(continued)

Return values hRetImage Returns the handle of the specified image. If an error occurs (for

example, if hRetImage is not a valid number), MetaMorph will return a handle of “0”.

Example ' Print out the names of all loaded images in the message

' window
Dim im As Long
Dim i As Integer
Dim name As String

Fo = 0 To
 MM.GetImage i, im
r i MM.GetNumberOfImages

 MM.GetImageName im, name
 MM.PrintMsg name
Next i

See also: GetCurrentImage

GetNumberOfImages

Description Returns the number of images loaded in MetaMorph.

Syntax GetNumberOfImages() As Long

Remarks A value of 0 will be returned if there are no images or if an error occurred.

Return values This function returns a value corresponding to the number of images that are currently

loaded. If an error has occurred, or if there are no images currently loaded, a value of
0 will be returned.

Example ' Print out the names of all loaded images in the message

' window
Dim im As Long
Dim i As Integer
Dim name As String

For i = 0 To MM.GetNumberOfImages
 MM.GetImage i, im
 MM.GetImageName im, name
 MM.PrintMsg name
Next i

Continued on next page

Page 48 Visual Basic Reference Guide MetaMorph

4.3 Finding Loaded Images, continued

IsValidImage

Description Tests whether or not the image handle you pass is valid.

Syntax IsValidImage(hImage As Long) As Long

Parameters hImage Gives the handle of the image being tested. If the handle value that you pass

is not valid, IsValidImage will return a value of “0”.

Return values hImage Returns a value of 0 if the handle you pass is not valid.

Example ' Determine if the image handle 'im' denotes a valid image.

' 'im' is an image handle that was initialized previously.
If MM.IsValidImage(im) Then
 MM.PrintMsg "image is valid"
Else
 MM.PrintMsg "Image is not valid"
End If

See also: GetCurrentImage, GetImage

MetaMorph Visual Basic Reference Guide Page 49

4.4 Manipulating Image Windows

Introduction This section describes the functions that are used for controlling the appearance of

your image windows. The following functions are used for changing the size and
position of image windows, as well as minimizing (shrinking to a desktop icon) and
maximizing (restoring to full size).

GetImageWindowPosition

Description Obtains the on-screen position of the specified image.

Syntax GetImageWindowPosition(hImage As Long, nRetXPos As Integer, nRetYPos As

Integer) As Long

Parameters hImage Specifies the handle of the image whose position you want to know.

Return values nRetXPos Gives the X-coordinate of the upper left corner of the image.

nRetYPos Gives the Y-coordinate of the upper left corner of the image.

Example ' Print the size and position of the window holding the current

image
Dim x As Integer, y As Integer, dx As Integer, dy As Integer
Dim im As Long

MM.GetCurrentImage im
MM.GetImageWindowSize im, dx, dy
MM.GetImageWindowPosition im, x, y
MM.PrintMsg "The current image is at " + Str(x) + ", " + Str(y)
MM.PrintMsg "The size of the current image is " + Str(dx) +
 " X " + Str(dy)

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetImageWindowSize,

SetImageWindowPosition

GetImageWindowSize

Description Obtains the width and height of the specified image.

Syntax GetImageWindowSize(hImage As Long, nRetXSize As Integer, nRetYSize As

Integer) As Long

Parameters hImage Specifies the handle of the image whose size you want to know.

Continued on next page

Page 50 Visual Basic Reference Guide MetaMorph

4.4 Manipulating Image Windows, continued

GetImageWindowSize
(continued)

Return values nRetXSize Gives the width, in pixels, of the image.

nRetYSize Gives the height, in pixels, of the image.

Example ' Print the size and position of the window holding the current

' image

Dim x As Integer, y As Integer, dx As Integer, dy As Integer
Dim im As Long

MM.GetCurrentImage im
MM.GetImageWindowSize im, dx, dy
MM.GetImageWindowPosition im, x, y
MM.PrintMsg "The current image is at " + Str(x) + ", " + Str(y)
MM.PrintMsg "The size of the current image is " + Str(dx) +
 " X " + Str(dy)

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3),

GetImageWindowPosition, SetImageWindowSize

MaximizeImageWindow

Description Expands the window of the specified image to full-size. If the image has been

minimized (shrunk to a desktop icon), it will expand the window to its normal size.

Syntax MaximizeImageWindow(hImage As Long) As Long

Parameters hImage Specifies the handle of the image you want to maximize.

Example ' Maximize the current image

Dim im As Long
MM.GetCurrentImage im
MM.MaximizeImageWindow im

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), MinimizeImageWindow

Continued on next page

MetaMorph Visual Basic Reference Guide Page 51

4.4 Manipulating Image Windows, continued

MinimizeImageWindow

Description Shrinks the window of the specified image to a desktop icon.

Syntax MinimizeImageWindow(hImage As Long) As Long

Parameters hImage Specifies the handle of the image you want to minimize.

Example ' Minimize the current image

Dim im As Long
MM.GetCurrentImage im
MM.MinimizeImageWindow im

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), MaximizeImageWindow

SetImageWindowPosition

Description Sets the position of the window for the specified image.

Syntax SetImageWindowPosition(hImage As Long, nXPos As Integer, nYPos As Integer)

Remarks This function dictates the position of the upper left corner of the image window.

Parameters hImage Specifies the handle of the image whose position you want to set.

nXPos Specifies the X-coordinate of the upper left corner of the image window.

nYPos Specifies the Y-coordinate of the upper left corner of the image window.

Example ' Make the window holding the current image 100 X 100 and put

' it in the upper left corner of the screen
Dim im As Long
MM.GetCurrentImage im
MM.SetImageWindowPosition im, 0, 0
MM.SetImageWindowSize im, 100, 100

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetImageWindowSize

Continued on next page

Page 52 Visual Basic Reference Guide MetaMorph

4.4 Manipulating Image Windows, continued

SetImageWindowSize

Description Sets the size of the window for the specified image.

Syntax SetImageWindowSize(hImage As Long, nXSize As Integer, nYSize As Integer) As

Long

Parameters hImage Specifies the handle of the image whose size you want to set.

nXSize Specifies the width, in pixels, of the image.

nYSize Specifies the height, in pixels, of the image.

Example ' Make the window holding the current image 100 X 100 and put

' it in the upper left corner of the screen
Dim im As Long
MM.GetCurrentImage im
MM.SetImageWindowPosition im, 0, 0
MM.SetImageWindowSize im, 100, 100

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3),

SetImageWindowPosition

MetaMorph Visual Basic Reference Guide Page 53

4.5 Reading and Using Image Properties

Introduction It is frequently necessary or useful to change certain characteristics about an image,

such as its dimensions, bit-depth, or name. The functions that follow can be used to
read or configure such image properties, as well as to read or create an annotation,
change zoom factor, or switch to a different plane in a stack. One programming
example is given for all of the image “Get” functions (see Figure 4.1 on page 56).

GetActivePlane

Description Obtains the number of the currently active plane in the specified image.

Syntax GetActivePlane(hImage Long, nRetPlaneNumber As Integer) As Long

Parameters hImage Specifies the handle of the image in which the plane resides.

Return values nRetPlaneNumber Returns the number of the active plane.

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetNumberOfPlanes,

SetActivePlane

GetDepth

Description Obtains the bit-depth of a specified image.

Syntax GetDepth(hImage As Long, nRetDepth As Integer) As Long

Parameters hImage Specifies the handle of the image.

Return values nRetDepth Returns the bit-depth—1, 8, 16, or 24.

See also: GetCurrentImage (Section 4.3), GetHeight, GetImage (Section 4.3), GetWidth

GetHeight

Description Obtains the height (Y-axis size) of a specified image. (Note: This may differ from the

height of the image window.)

Syntax GetHeight(hImage As Long, nRetHeight As Integer) As Long

Parameters hImage Specifies the handle of the image.

Continued on next page

Page 54 Visual Basic Reference Guide MetaMorph

4.5 Reading and Using Image Properties, continued

GetHeight
(continued)

Return values nRetHeight Returns the Y-axis size, in pixels, of the image.

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetImageWindowSize,

GetWidth

GetImageAnnotation

Description Obtains the annotation of the specified image.

Syntax GetImageAnnotation(hImage As Long, planeNumber As Integer, sRetAnnotation As

String) As Long

Remarks Returns the annotation of the given plane of the given image. The annotation is

returned in sRetAnnotation.

Parameters hImage Specifies the handle of the image.

planeNumber Specifies the number of the plane in a stack whose annotation you
want to obtain. If the image is a single plane, this variable must be 0.

Return values sRetAnnotation Returns the annotation text.

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetImageAnnotation

GetImageName

Description Obtains the name of a specified image.

Syntax GetImageName(hImage As Long, sRetName As String) As Long

Parameters hImage Specifies the handle of the image.

Return values sRetName Returns the name of the image.

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetImageName

Continued on next page

MetaMorph Visual Basic Reference Guide Page 55

4.5 Reading and Using Image Properties, continued

GetNumberOfPlanes

Description Obtains the number of planes in a specified image or stack of images.

Syntax GetNumberOfPlanes(hImage As Long, nRetNumberOfPlanes As Integer) As Long

Parameters hImage Specifies the handle of the image.

Return values nRetNumberOfPlanes Returns the number of planes

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetActivePlane

GetWidth

Description Obtains the width (X-axis size) of the specified image. (Note: This may differ from

the width of the image window.)

Syntax GetWidth(hImage As Long, nRetWidth As Integer) As Long

Parameters hImage Specifies the handle of the image.

Return values nRetWidth Returns the X-axis size, in pixels, of the image.

See also: GetCurrentImage (Section 4.3), GetHeight, GetImage (Section 4.3),

GetImageWindowSize

GetZoom

Description Obtains the zoom factor level of the specified image.

Syntax GetZoom(hImage As Long, nRetZoom As Integer) As Long

Parameters hImage Specifies the handle of the image.

Return values nRetZoom Returns the zoom level, expressed as a percentage of the full size (100 =

normal size).

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetZoom

Continued on next page

Page 56 Visual Basic Reference Guide MetaMorph

4.5 Reading and Using Image Properties, continued

Figure 4.1 Image “Get” Function Programming Example

' Print information about the current image

Dim im As Long
MM.GetCurrentImage im

Dim name As String
MM.GetImageName im, name

Dim w As Integer, h As Integer, d As Integer
MM.GetWidth im, w
MM.GetHeight im, h
MM.GetDepth im, d

MM.PrintMsg "The image " + name + " is " + Str(w)
 + " X " + Str(h)
MM.PrintMsg "and has a depth of " + Str(d)

Dim nPlanes As Integer
Dim curPlane As Integer
MM.GetNumberOfPlanes im, nPlanes
MM.GetActivePlane im, curPlane
MM.PrintMsg "It has " + Str(nPlanes) +
 " planes, and the current plane is " + Str(curPlane)

Dim ann As String
MM.GetImageAnnotation im, curPlane, ann
MM.PrintMsg "The annotation of the current plane is "
 + ann

Dim z nteger As I
MM.GetZoom im, z
MM.PrintMsg "and the zoom is " + Str(z)

Continued on next page

MetaMorph Visual Basic Reference Guide Page 57

4.5 Reading and Using Image Properties, continued

SetActivePlane

Description Selects a plane in a specified image stack and makes it the active plane.

Syntax SetActivePlane(hImage As Long, planeNumber As Integer) As Long

Remarks Planes are numbered starting at 0.

Parameters hImage Specifies the handle of the image.

planeNumber Specifies the number of the plane to be made active.

Example ' Set the active plane of the current image to 3 if it has

' that many planes

Dim im As Long
MM.GetCurrentImage im
Dim nPlanes As Integer
MM.GetNumberOfPlanes im, nPlanes

If nPlanes > 3 Then
 MM.SetActivePlane im, 3
Else
 PrintMsg "Error! Image only has " + Str(nPlanes) + " planes"
End If

See also: GetActivePlane, GetCurrentImage (Section 4.3), GetImage (Section 4.3)

SetImageAnnotation

Description Assigns an annotation to an image or stack plane.

Syntax SetImageAnnotation(hImage As Long, planeNumber As Integer, annotation As

String) As Long

Parameters hImage Specifies the handle of the image.

planeNumber Specifies the number of the plane to be made active.

annotation Provides the annotation text to be assigned to the selected image or plane.

Example ' Set the annotation of plane 0 of the current image

Dim im As Long
MM.GetCurrentImage im
MM.SetImageAnnotation im, 0, "This is the first plane"

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetImageAnnotation

Continued on next page

Page 58 Visual Basic Reference Guide MetaMorph

4.5 Reading and Using Image Properties, continued

SetImageName

Description Assigns a new name to a selected image.

Syntax SetImageName(hImage As Long, name As Long) As Long

Parameters hImage Specifies the handle of the image.

name Specifies the name for the image.

Example ' Set the name of the current image to "Fred"

Dim im As Long
MM.GetCurrentImage im
MM.SetImageName im, "Fred"

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetImageName

SetImageTimestamp

Description Sets the timestamp (either creation time or last saved time) for a given image to the

specified date and time.

Syntax SetImageTimestamp(hImage As Long, nStampType As Integer, nMonth As Integer,

nDay As Integer, nYear As Integer, nHours As Integer, nMinutes As Integer,
nSeconds As Integer, nMilliseconds As Integer)

Parameters hImage Specifies the handle of the image.

nStampType Specifies which timestamp will be set, 0 for creation time and non-0 for
last saved time.

nMonth Specifies the month, with 1 signifying January, 6 signifying June, etc.

nDay Specifies the date, from 1 to 31.

nYear Specifies the year, using four digits.

nHours Specifies the hour, from 0 to 23, counting forward from midnight.

nMinutes Specifies the minute, from 0 to 59.

nSeconds Specifies the seconds, from 0 to 59.

nMilliseconds Specifies the milliseconds, from 0 to 999.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 59

4.5 Reading and Using Image Properties, continued

SetImageTimestamp
(continued)

Example ' Set the creation timestamp of the current image to 2:33:20.68

' PM on November 3, 2001.

Dim im As Long
MM.GetCurrentImage im
MM.SetImageTimestamp im, 0, 11, 3, 2001, 14, 33, 20, 680

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3)

SetZoom

Description Sets the zoom factor of a specified image.

Syntax SetZoom(hImage As Long, zoom As Integer, nXCenter As Integer, nYCenter As

Integer) As Long

Remarks Full size is assigned a numeric value of 100. Numbers smaller than 100 will make the

image smaller, and those greater than 100 will make the image larger. If the image
becomes larger than its display window, nXCenter and nYCenter give the pixel
coordinates at which to center the image.

Parameters hImage Specifies the handle of the image.

zoom Specifies the zoom level, as a percent of the full-sized image.

nXCenter Specifies the X-coordinate for the pixel at which the zoomed image is to
be centered.

nYCenter Specifies the Y-coordinate for the pixel at which the zoomed image is to
be centered.

Example ' Set the zoom of the current image to 200 and center the image

' at 100, 100
Dim im As Long
MM.GetCurrentImage im
MM.SetZoom im, 200, 100, 100

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetZoom

Page 60 Visual Basic Reference Guide MetaMorph

Chapter 5 − Adjusting Image Display

5.1 Overview

Introduction Image display can be modified in a number of ways—you can increase image

contrast, you can brighten or darken the image, you can adjust the grayscale or color
resolution by altering the number of entries in the image’s palette, or you can modify
the values in the image’s look-up table. This chapter covers the functions you will
need to use to accomplish these tasks.

In this chapter This chapter contains the following topics:

Topic See Page

Updating the Image After Changing the Display 61

Adjusting Brightness and Contrast 62

Autoscaling 16-Bit Images 66

Working with Look-up Tables and Palettes 71

MetaMorph Visual Basic Reference Guide Page 61

5.2 Updating the Image After Changing the Display

Introduction The first function in this chapter is of such vital importance that we feel it warrants a

separate section of its own. Any time you execute a function that makes a change to
an image, such as when you create a region of interest, alter the brightness or contrast,
switch look-up tables, or assign a set of intensity values to a row or column of pixels,
you will need to update the image display. The UpdateDisplay function carries out
this operation.

UpdateDisplay

Description Redraws any parts of the image that need updating. This function should be called

after pixel modification operations to cause those changes to be drawn.

Syntax UpdateDisplay(hImage As Long) As Long

Parameters hImage Specifies the handle of the image to be updated.

Example ' Draw a white box on the current image and then update the

' display so the changed pixels are shown

Dim i As Integer
Dim im As Long
Dim data(20) As Byte

For i = 1 To 20
 data(i) = 255
Next i

MM.GetCurrentImage im

For i 20 = 1 To
 MM.WriteRow im, 0, i, 20, 8, data
Next i

MM.UpdateDisplay im

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3)

Page 62 Visual Basic Reference Guide MetaMorph

5.3 Adjusting Brightness and Contrast

Introduction The image display adjustments you are most often likely to perform are those which

modify an image’s brightness and contrast. Brightness settings can range from 0 to
100, with 50 representing the brightness value of the original, unaltered image.
Contrast settings range from 50 to 100. (MetaMorph can only increase image contrast
from the original.) The following functions are used for reading the current settings
and changing them to suit your needs. If you need to adjust the brightness or contrast
of a 16-bit image, you will need to use the functions described in Section 5.4.

AutoEnhance

Description Automatically enhances the brightness and contrast of a specified image.

Syntax AutoEnhance(hImage As Long) As Long

Parameters hImage Specifies the handle of the image to be autoenhanced.

Example ' Autoenhance the image contrast then fix it

Dim im As Long
MM.GetCurrentImage im
MM.AutoEnhance im
MM.FixImage im

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetBrightness,

SetContrast

FixImage

Description Makes changes to the brightness and/or contrast of an image permanent.

Syntax FixImage(hImage As Long) As Long

Parameters hImage Specifies the handle of the image in which brightness and/or contrast

changes are to be made permanent.

Example ' Autoenhance the image contrast then fix it

Dim im As Long
MM.GetCurrentImage im
MM.AutoEnhance im
MM.FixImage im

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetBrightness,

SetContrast

Continued on next page

MetaMorph Visual Basic Reference Guide Page 63

5.3 Adjusting Brightness and Contrast, continued

GetBrightness

Description Obtains the brightness setting of a specified image.

Syntax GetBrightness(hImage As Long, nRetBrightness As Double) As Long

Parameters hImage Specifies the handle of the image whose brightness setting you want to

obtain.

Example ' Double the brightness and contrast of the current image

Dim im As Long
Dim bright As Double
Dim contrast As Long
MM.GetCurrentImage im
MM.GetBrightness im, bright
MM.GetContrast im, contrast
MM.SetBrightness im, bright * 2
MM.SetContrast im, contrast * 2

Return values nRetBrightness Returns the brightness setting value.

See also: GetContrast, GetCurrentImage (Section 4.3), GetImage (Section 4.3)

GetContrast

Description Obtains the contrast setting of a specified image.

Syntax GetContrast(hImage As Long, nRetContrast As Double) As Long

Parameters hImage Specifies the handle of the image whose contrast setting you want to obtain.

Return values nRetContrast Returns the contrast setting value.

Example ' Double the brightness and contrast of the current image

Dim im As Long
Dim bright As Double
Dim contrast As Long
MM.GetCurrentImage im
MM.GetBrightness im, bright
MM.GetContrast im, contrast
MM.SetBrightness im, bright * 2
MM.SetContrast im, contrast * 2

See also: GetBrightness, GetCurrentImage (Section 4.3), GetImage (Section 4.3)

Continued on next page

Page 64 Visual Basic Reference Guide MetaMorph

5.3 Adjusting Brightness and Contrast, continued

ResetContrast

Description Resets the contrast and brightness of a specified image to the settings it had when last

saved or “fixed.”

Syntax ResetContrast(hImage As Long) As Long

Parameters hImage Specifies the handle of the image whose brightness and/or contrast settings

you want to reset.

Example ' Reset the contrast of the current image

Dim im As Long
MM.GetCurrentImage im
MM.ResetContrast im

See also: FixImage, GetCurrentImage (Section 4.3), GetImage (Section 4.3)

SetBrightness

Description Sets the brightness of an image to a specified intensity value.

Syntax SetBrightness(hImage As Long, brightness As Double) As Long

Parameters hImage Specifies the handle of the image whose brightness you want to set.

brightness Specifies a new intensity setting.

Example ' Double the brightness and contrast of the current image

Dim im As Long
Dim bright As Double
Dim contrast As Long
MM.GetCurrentImage im
MM.GetBrightness im, bright
MM.GetContrast im, contrast
MM.SetBrightness im, bright * 2
MM.SetContrast im, contrast * 2

See also: AutoEnhance, FixImage, GetCurrentImage (Section 4.3), GetImage (Section 4.3),

SetContrast

Continued on next page

MetaMorph Visual Basic Reference Guide Page 65

5.3 Adjusting Brightness and Contrast, continued

SetContrast

Description Sets the contrast of an image to a specified setting.

Syntax SetContrast(hImage As Long, contrast As Double) As Long

Parameters hImage Specifies the handle of the image whose contrast you want to set.

contrast Specifies a new contrast setting.

Example ' Double the brightness and contrast of the current image

Dim im As Long
Dim bright As Double
Dim contrast As Long
MM.GetCurrentImage im
MM.GetBrightness im, bright
MM.GetContrast im, contrast
MM.SetBrightness im, bright * 2
MM.SetContrast im, contrast * 2

See also: AutoEnhance, FixImage, GetCurrentImage (Section 4.3), GetImage (Section 4.3),

SetBrightness

Page 66 Visual Basic Reference Guide MetaMorph

5.4 Autoscaling 16-Bit Images

Introduction Sixteen-bit images require a different approach when it comes to adjusting brightness

and contrast. Because of the greater range of intensity values that are involved,
autoscaling a 16-bit image relies on a different set of functions from those described
in the preceding section.

GetAutoScale

Description Obtains the current autoscaling state of a specified 16-bit image.

Syntax GetAutoScale(hImage As Long, bRetOnOff As Boolean) As Long

Parameters hImage Specifies the handle of the image whose autoscaling state you want to

obtain.

Return values bRetOnOff Returns the current autoscaling state. A value of TRUE means it is

currently enabled, and FALSE means it is currently disabled.

Example ' Get the autoscale properties of the current image

Dim im As Long
Dim onoff As Boolean
Dim min As Integer
Dim max As Integer

MM.GetCurrentImage im
MM.GetAutoScale im, onoff
MM.GetMinScale im, min
MM.GetMaxScale im, max

MM.PrintMsg "The min and max scale of the current image is "
 + Str(min) + " and " + Str(max)
If onoff UE Then = TR
 MM.PrintMsg "The autoscaling of the current image is ON"
Else
 MM.PrintMsg "The autoscaling of the current image is OFF"
End If

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetAutoScale

Continued on next page

MetaMorph Visual Basic Reference Guide Page 67

5.4 Autoscaling 16-Bit Images, continued

GetMaxScale

Description Obtains the maximum scaling value of a specified 16-bit image.

Syntax GetMaxScale(hImage As Long, nRetMaxScale As Integer) As Long

Parameters hImage Specifies the handle of the image whose maximum scaling value you want

to obtain.

Return values nRetMaxScale Returns the maximum scaling grayscale value.

Example ' Get the autoscale properties of the current image

Dim im As Long
Dim onoff As Boolean
Dim min As Integer
Dim max As Integer

MM.GetCurrentImage im
MM.GetAutoScale im, onoff
MM.GetMinScale im, min
MM.GetMaxScale im, max

MM.PrintMsg "The min and max scale of the current image is "
 + Str(min) + " and " + Str(max)
If onoff = TRUE Then
 MM.PrintMsg "The autoscaling of the current image is ON"
Else
 MM.PrintMsg "The autoscaling of the current image is OFF"
End If

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetMinScale

Continued on next page

Page 68 Visual Basic Reference Guide MetaMorph

5.4 Autoscaling 16-Bit Images, continued

GetMinScale

Description Obtains the minimum scaling value of a specified 16-bit image.

Syntax GetMinScale(hImage As Long, nRetMinScale As Integer) As Long

Parameters hImage Specifies the handle of the image whose minimum scaling value you want to

obtain.

Return values nRetMinScale Returns the minimum scaling grayscale value.

Example ' Get the autoscale properties of the current image

Dim im As Long
Dim onoff As Boolean
Dim min As Integer
Dim max As Integer

MM.GetCurrentImage im
MM.GetAutoScale im, onoff
MM.GetMinScale im, min
MM.GetMaxScale im, max

MM.PrintMsg "The min and max scale of the current image is "
 + Str(min) + " and " + Str(max)
If onoff = TRUE Then
 MM.PrintMsg "The autoscaling of the current image is ON"
Else
 MM.PrintMsg "The autoscaling of the current image is OFF"
End If

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetMaxScale

SetAutoScale

Description Enables or disables autoscaling for the specified 16-bit image.

Syntax SetAutoScale(hImage as Long, bOnOff As Boolean) As Long

Parameters hImage Specifies the handle of the image for which you want to enable or disable

autoscaling.

bOnOff Sets the scaling state. If you set bOnOff to TRUE, autoscaling will be
enabled. To disable autoscaling, set bOnOff to FALSE.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 69

5.4 Autoscaling 16-Bit Images, continued

SetAutoScale
(continued)

Example ' Enable autoscaling for the current image and set the

' range from 0 to 4095
Dim im As Long
MM.GetCurrentImage im
MM.SetAutoScale im, TRUE
MM.SetMinScale im, 0
MM.SetMaxScale im, 4095

See also: GetAutoScale, GetCurrentImage (Section 4.3), GetImage (Section 4.3)

SetMaxScale

Description Sets the maximum value for the grayscale range being used to autoscale a specified

16-bit image.

Syntax SetMaxScale(hImage As Long, nMaxScale As Integer) As Long

Parameters hImage Specifies the handle of the image for which you want to set the maximum

autoscaling value.

nMaxScale Defines the maximum grayscale value for the autoscaling range.

Example ' Enable autoscaling for the current image and set the

' range from 0 to 4095
Dim im As Long
MM.GetCurrentImage im
MM.SetAutoScale im, TRUE
MM.SetMinScale im, 0
MM.SetMaxScale im, 4095

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetAutoScale,

SetMinScale

Continued on next page

Page 70 Visual Basic Reference Guide MetaMorph

5.4 Autoscaling 16-Bit Images, continued

SetMinScale

Description Sets the minimum value for the grayscale range being used to autoscale a specified

16-bit image.

Syntax SetMinScale(hImage As Long, nMinScale As Integer) As Long

Parameters hImage Specifies the handle of the image for which you want to set the minimum

autoscaling value.

nMinScale Defines the minimum grayscale value for the autoscaling range.

Example ' Enable autoscaling for the current image and set the

' range from 0 to 4095
Dim im As Long
MM.GetCurrentImage im
MM.SetAutoScale im, TRUE
MM.SetMinScale im, 0
MM.SetMaxScale im, 4095

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetAutoScale,

SetMaxScale

MetaMorph Visual Basic Reference Guide Page 71

5.5 Working with Look-up Tables and Palettes

Introduction A look-up table, or LUT, is a “table” of values that translates each original grayscale

value in an image to another intensity or to a color. This allows you to change the
display of an image without affecting its data. The functions in this section can be
used for making changes to the current LUT or for switching to another LUT. In
addition, you can change the number of grayscale levels or colors that are displayed
by changing the number of palette entries with the SetNumPaletteEntries function.

GetLut – for Visual Basic 6 & earlier
GetLutEx2 – for Visual Basic .NET (2002 – 2008)

Description Reads the elements from the given look-up table (LUT) into the red, green, and blue

arrays that are passed.

Syntax GetLut(hImage As Long, lutNumber As Integer, startElement As Integer, nElements

As Integer, red() As Byte, green() As Byte, blue() As Byte) As Long
GetLutEx2(hImage As Long, lutNumber As Integer, startElement As Integer,
nElements As Integer, red() As Byte, green() As Byte, blue() As Byte) As Long

Remarks The LUT that you want to read is specified by lutNumber. Use one of the following

constants:

 0 = Monochrome
 1 = Pseudocolor
 2 = Red
 3 = Green
 4 = Blue

or use a user LUT number from 5 to 15.

Parameters hImage Specifies the handle of the image for which you want to read the LUT

values.

lutNumber Specifies the LUT to be read. (See Remarks.)

startElement Indicates the number of the element in the LUT where reading is to
start.

nElements Specifies the number of LUT elements to read. This will determine the
size of the red(), green(), and blue() arrays (see Return values).

Return values red() Passes the values of the elements from the red channel of the LUT. The size of

this array will be determined by the number of elements in the look-up table.

green() Passes the values of the elements from the green channel of the LUT. The
size of this array will be determined by the number of elements in the look-up table.

blue() Passes the values of the elements from the blue channel of the LUT. The size
of this array will be determined by the number of elements in the look-up table.

Continued on next page

Page 72 Visual Basic Reference Guide MetaMorph

5.5 Working with Look-up Tables and Palettes, continued

GetLut
(continued)

Example ' Read the first user lut of the current image into memory.

' Since LUTs 0 through 4 are the fixed LUTs, the first user
' LUT is LUT number 5
Dim im As Long
Dim r(256) As Byte
Dim g(256) As Byte
Dim b(256) As Byte
MM.GetCurrentImage im
MM.GetLut im, 5, 0, 256, r, g, b

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetLutModel, SetLut

GetLutModel

Description Obtains a value that indicates the look-up table (LUT) currently being used to display

the given image.

Syntax GetLutModel(hImage As Long, nRetLutModel As Integer) As Long

Remarks The LUT that is in use is indicated by a numeric value. The values returned in

nRetLutModel are

 0 = Monochrome
 1 = Pseudocolor
 2 = Red
 3 = Green
 4 = Blue

or a user-defined LUT, with a number between 5 and 15.

Parameters hImage Specifies the handle of the image for which you want to determine the LUT.

Return values nRetLutModel Returns the LUT value. (See Remarks.)

Continued on next page

MetaMorph Visual Basic Reference Guide Page 73

5.5 Working with Look-up Tables and Palettes, continued

GetLutModel
(continued)

Example ' Determine which LUT is currently being used on the current

' image

Dim im As Long
Dim lutnum As Integer

MM.GetCurrentImage im
MM.GetLutModel im, lutnum

If lutnum = 0 Then
 MM.PrintMsg "LUT is Monochrome"
ElseI lutnum = 1 Then f
 MM.PrintMsg "LUT is Pseudocolor"
ElseIf lutnum = 2 Then
 MM.PrintMsg "LUT is Red"
ElseIf lutnum = 3 Then
 MM.PrintMsg "LUT is Green"
ElseI lutnum = 4 Then f
 MM.PrintMsg "LUT is Blue"
Else
 MM.PrintMsg "LUT is user LUT number " + Str(lutnum = 5)
End If

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetLut, SetLutModel

Continued on next page

Page 74 Visual Basic Reference Guide MetaMorph

5.5 Working with Look-up Tables and Palettes, continued

SetLut

Description Writes the contents of the red, green, and blue arrays passed into the elements of the

given look-up table (LUT).

Syntax SetLut(hImage As Long, lutNumber As Integer, startElement As Integer, nElements

As Integer, red() As Byte, green() As Byte, blue() As Byte) As Long

Parameters hImage Specifies the handle of the image for which you want to set the LUT.

lutNumber Denotes the user-defined LUT to which you want to write (5 to 15). You
cannot write to the predefined LUTs (Monochrome, etc).

startElement Indicates the number of the element in the LUT where writing is to
start.

nElements Specifies the number of LUT elements to write.

red() Indicates the array for the red channel of the LUT. LUTs have a maximum
possible total of 256 elements. The red array must contain at least nElements
elements.

green() Indicates the array for the green channel of the LUT. LUTs have a maximum
possible total of 256 elements. The green array must contain at least nElements
elements.

blue() Indicates the array for the blue channel of the LUT. LUTs have a maximum
possible total of 256 elements. The blue array must contain at least nElements
elements.

Example ' Configure user LUT 0 on the current image as an inverted

' contrast monochrome LUT and then use it

Dim im As Long
Dim i As Integer
Dim lut(256) As Byte

For i = 0 To 255
 lut(i) = 255 - i
Next i

MM.GetCurrentImage im
MM.SetLut im, 5, 0, 256, lut, lut, lut
MM.SetLutModel im, 5

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetLutModel,

SetNumPaletteEntries

Continued on next page

MetaMorph Visual Basic Reference Guide Page 75

5.5 Working with Look-up Tables and Palettes, continued

SetLutModel

Description Specifies a look-up table (LUT) to use to display the given image.

Syntax SetLutModel(hImage As Long, nLutModel As Integer) As Long

Remarks The model of LUT to use is specified with nLutModel. Values you can use are

 0 = Monochrome
 1 = Pseudocolor
 2 = Red
 3 = Green
 4 = Blue

or a user-defined LUT, with a number between 5 and 15.

Parameters hImage Specifies the handle of the image for which you want to set the LUT model.

nLutModel Specifies the value of the LUT you want to use. (See Remarks.)

Example ' Configure user LUT 0 on the current image as an inverted

' contrast monochrome LUT and then use it

Dim im As Long
Dim i As Integer
Dim lut(256) As Byte

For i = 0 To 255
 lut(i) = 255 - i
Next i

MM.GetCurrentImage im
MM.SetLut im, 5, 0, 256, lut, lut, lut
MM.SetLutModel im, 5

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetLut,

SetNumPaletteEntries

Continued on next page

Page 76 Visual Basic Reference Guide MetaMorph

5.5 Working with Look-up Tables and Palettes, continued

SetNumPaletteEntries

Description Specifies the number of palette entries to use for displaying an image.

Syntax SetNumPaletteEntries(hImage As Long, newNumEntries As Integer) As Long

Remarks The maximum possible number of palette entries is 236. This is because the Windows

operating system reserves 20 palette colors for use by such interface elements as
dialog box buttons, title bars, and the like.

Parameters hImage Specifies the handle of the image for which you want to set the number of

palette entries.

newNumEntries Specifies the number of palette entries: 2, 4, 8, 16, 32, 64, 128, or
236.

Example ' Set the number of palette entries on the current image to 8.

' This will make the image appear as if it is quantized.
Dim im As Long
MM.GetCurrentImage im
MM.SetNumPaletteEntries im, 8

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetLut, SetLutModel

MetaMorph Visual Basic Reference Guide Page 77

Chapter 6 − Reading and Using Image Pixel Data

6.1 Overview

Introduction Digital images are constructed of individual points, or pixels, each of which has a

specific, quantifiable intensity value or color. Because each pixel can be represented
in memory by a set of numeric values that encode its location (X and Y coordinates)
and brightness or color (grayscale or color value), a variety of manipulations can be
applied that analyze and process the information contained in an image. This chapter
deals with the functions that read and manipulate image pixel data.

In this chapter This chapter contains the following topics:

Topic See Page

Applying Thresholding 78

Reading and Manipulating Image Data 82

Page 78 Visual Basic Reference Guide MetaMorph

6.2 Applying Thresholding

Introduction Most procedures in image analysis require that a distinction be made between the

objects to be measured and the rest of the image. MetaMorph makes this distinction
on the basis of the intensity values of pixels in the object vs. those in the background
regions. This procedure, which is called segmentation or thresholding, involves
defining a range of intensity values that will be considered as belonging to the objects
being measured. A threshold range can be inclusive or exclusive. An inclusive
threshold is one which considers all grayscale values between the upper and lower
limits of the threshold range as belonging to the objects being measured. Conversely,
an exclusive threshold considers all grayscale values that are equal to, or outside of,
the upper and lower limits as belonging to the objects being measured. The four
functions described in this section are used for determining the current threshold
settings and for defining a new set of threshold settings.

GetThresholdRange

Description Obtains the current threshold range (maximum and minimum grayscale settings) of

the specified image.

Syntax GetThresholdRange(hImage As Long, nRetLow As Integer, nRetHigh As Integer)

As Long

Parameters hImage Specifies the handle of the image whose threshold range you want to obtain.

Return values nRetLow Returns the grayscale value of the lower threshold limit.

nRetHigh Returns the grayscale value of the upper threshold limit.

Example ' Get the threshold range and state of the current image

Dim im As Long
Dim low As Integer, high As Integer, state As Integer

MM.GetCurrentImage im
MM.GetThresholdRange im, low, high
MM.GetThresholdState im, state

MM.PrintMsg "The low and high threshold values of the current
 image are " + Str(low) + " and " + Str(high)
If state = 0 Then
 MM.PrintMsg "Thresholding is currently off"
ElseI state = 1 Then f
 MM.PrintMsg "Thresholding is set to 'On-Inclusive' mode"
ElseI state = 2 Then f
 MM.PrintMsg "Thresholding is set to 'On-Exclusive' mode"
End If

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetThresholdState,

SetThresholdRange

Continued on next page

MetaMorph Visual Basic Reference Guide Page 79

6.2 Applying Thresholding, continued

GetThresholdState

Description Obtains the threshold state of the specified image

Syntax GetThresholdState(hImage As Long, nRetState As Integer) As Long

Parameters hImage Specifies the handle of the image whose thresholding state you want to

obtain.

Return values nRetState Returns the current thresholding state of the given image. If thresholding

is disabled, nRetState will return a value of 0. If the threshold state is set to On-
Inclusive (pixels with grayscale values between the upper and lower threshold limits
are included), nRetState will be set to 1. If the threshold state is set to On-Exclusive
(pixels with grayscale values equal or lower than the lower threshold limit, and those
with values equal or higher than the upper limit, are included), nRetState will return a
value of 2.

Example ' Get the threshold range and state of the current image

Dim im As Long
Dim low As Integer, high As Integer, state As Integer

MM.GetCurrentImage im
MM.GetThresholdRange im, low, high
MM.GetThresholdState im, state

MM.PrintMsg "The low and high threshold values of the current
 image are " + Str(low) + " and " + Str(high)
If state Then = 0
 MM.PrintMsg "Thresholding is currently off"
ElseIf state = 1 Then
 MM.PrintMsg "Thresholding is set to 'On-Inclusive' mode"
ElseIf state = 2 Then
 MM.PrintMsg "Thresholding is set to 'On-Exclusive' mode"
End If

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetThresholdRange,

SetThresholdState

Continued on next page

Page 80 Visual Basic Reference Guide MetaMorph

6.2 Applying Thresholding, continued

SetThresholdRange

Description Sets the upper and lower limit of a threshold range for a specified image.

Syntax SetThresholdRange(hImage As Long, low As Integer, high As Integer) As Long

Parameters hImage Specifies the handle of the image whose thresholding range you want to set.

low Specifies the grayscale value of the lower threshold limit.

high Specifies the grayscale value of the upper threshold limit.

Example ' Enable thresholding in the current image, and highlight

pixels
' between grayscale values 50 and 187
Dim im As Long
MM.GetCurrentImage im
MM.SetThresholdRange im, 50, 187
MM.SetThresholdState im, 1

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetThresholdState

SetThresholdState

Description Sets the threshold state of the specified image.

Syntax SetThresholdState(hImage As Long, state As Integer) As Long

Remarks The threshold state is set with the state variable. Possible values are

 0: Disables thresholding (Off).
 1: Enables inclusive thresholding, in which all pixels with grayscale
 values between the high and low values (see SetThresholdRange)
 are highlighted.
 2: Enables exclusive thresholding, in which all pixels with grayscale
 values equal to or outside the high and low values are highlighted.

Parameters hImage Specifies the handle of the image whose thresholding state you want to set.

state Indicates the thresholding state for the image. (See Remarks.)

Continued on next page

MetaMorph Visual Basic Reference Guide Page 81

6.2 Applying Thresholding, continued

SetThresholdState
(continued)

Example ' Enable thresholding in the current image, and highlight

pixels
' between grayscale values 50 and 187
Dim im As Long
MM.GetCurrentImage im
MM.SetThresholdRange im, 50, 187
MM.SetThresholdState im, 1

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), SetThresholdRange

Page 82 Visual Basic Reference Guide MetaMorph

6.3 Reading and Manipulating Image Data

Introduction Pixel intensities are represented by numeric values in computer memory, and can be

easily read and manipulated. This section describes the functions that perform such
“read” and “write” procedures. The BinarizeImage and WriteText functions are
included here because the process of converting all pixels to black or white and the
process of adding a text label to an image are little more than a reassignment of the
intensity values of the underlying pixels.

BinarizeImage

Description Creates a binarized (1-bit) version of a selected image.

Syntax BinarizeImage(hImage As Long, hDest As Long) As Long

Remarks This function places a binarized version of hImage in the image given by hDest.

hImage should be thresholded before this function is called, or you will get a blank
result image.

Parameters hImage Specifies the handle of the image you want to binarize.

hDest Specifies the handle of a destination image that will be overwritten with the
binarized version of hImage. The destination image must exist before you can apply
this function. Typically, you will create an image with the CreateImage command.

Example ' Binarize the current image and place it in "Binarized"

Dim curIm As Long
Dim binIm As Long

MM.GetCurrentImage curIm
MM.CreateImage 512, 512, 1, "Binarized", binIm

' curIm must be thresholded before it can be binarized
MM.SetThresholdState curIm, 1
MM.SetThresholdRange im, 50, 150

MM.BinarizeImage curIm, binIm

See also: GetCurrentImage (Section 4.3), CreateImage (Section 4.2), GetImage

(Section 4.3)

Continued on next page

MetaMorph Visual Basic Reference Guide Page 83

6.3 Reading and Manipulating Image Data, continued

ReadColumn

Description Reads the intensity values of a vertical line of pixels from a selected image and writes

them into an array.

Syntax ReadColumn(hImage As Long, xPos As Integer, yPos As Integer, nPixels As

Integer, depth As Integer, pixelBuffer() As Variant) As Long

Parameters hImage Specifies the handle of the image to be read.

xPos Specifies the X-coordinate of the pixel where reading should start.

yPos Specifies the Y-coordinate of the pixel where reading should start.

nPixels Specifies the number of pixels to be read, starting at the position given by
xPos and yPos. The size of the array will depend on the image bit-depth and the data
type used for the array buffer. (See Section 1.6, Data Types and Arrays.)

depth Specifies what the bit-depth of the pixel data values should be. (See Section
1.6, Data Types and Arrays.)

pixelBuffer() Defines a buffer into which the pixel values will be read. If depth is 8,
pixelBuffer should be defined as Byte. If depth is 16, pixelBuffer should be Integer. If
depth is 24, pixelBuffer should be Byte.

Return values pixelBuffer() The pixel values will be read into this predefined buffer. If the source

image is 24-bit, the array will be read out in the format B, G, R, B, G, R, etc. Thus,
array(0) will be the first blue pixel, array(1) will be the first green pixel, and so forth.
(See Parameters.)

Example ' Read a column of 50 pixels starting at location (10, 0) from

' the current image
Dim im As Long
Dim buf e (50) As Byt
MM.GetCurrentImage im
MM.ReadColumn im, 10, 0, 50, 8, buf

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), ReadColumnEx,

ReadPixel, ReadRow

Continued on next page

Page 84 Visual Basic Reference Guide MetaMorph

6.3 Reading and Manipulating Image Data, continued

ReadColumnEx – for Visual Basic 6 & earlier
ReadColumnEx2 – for Visual Basic .NET (2002 – 2008)

Description Reads the intensity values of a vertical line of pixels from a selected image and writes

the values into an array, starting at a specified starting location in the array.

Syntax ReadColumnEx(hImage As Long, xPos As Integer, yPos As Integer, nPixels As

Integer, depth As Integer, xStart As Integer, yStart As Integer, pixelBuffer() As
Variant) As Long
ReadColumnEx2(hImage As Long, xPos As Integer, yPos As Integer, nPixels As
Integer, depth As Integer, xStart As Integer, yStart As Integer, pixelBuffer() As
Variant) As Long

Parameters hImage Specifies the handle of the image to be read.

xPos Specifies the X-coordinate of the pixel where reading should start.

yPos Specifies the Y-coordinate of the pixel where reading should start.

nPixels Specifies the number of pixels to be read, starting at the position given by
xPos and yPos. The size of the array will depend on the image bit-depth and the data
type used for the array buffer. (See Section 1.6, Data Types and Arrays.)

depth Specifies what the bit-depth of the pixel data values should be. (See Section
1.6, Data Types and Arrays.)

xStart Specifies the X-coordinate of the position in the array where writing should
start.

yStart Specifies the Y-coordinate of the start position in the array for writing.

pixelBuffer() Defines a buffer into which the pixel values will be read. This is a two-
dimensional array. Data are always placed in the array in “column-major” fashion. If
depth is 8, pixelBuffer should be defined as Byte. If depth is 16, pixelBuffer should be
Integer. If depth is 24, pixelBuffer should be Byte.

Return values pixelBuffer() The pixel values will be read into this predefined buffer. If the source

image is 24-bit, the array will be read out in the format B, G, R, B, G, R, etc. Thus,
array(0) will be the first blue pixel, array(1) will be the first green pixel, and so forth.
(See Parameters.)

Example ' Read a 50 x 50 block of pixels from the current image

' and write it back rotated 90 degrees counterclockwise
Dim im As Long
Dim x As Integer
Dim buf Byte (50, 50) As
MM.GetCurrentImage im

For x = 0 To 49
 MM.ReadColumnEx im, x, 0, 50, 8, 0, x, buf
 MM.WriteRowEx im, 0, x + 50, 50, 8, 0, x, buf
Next x

MetaMorph Visual Basic Reference Guide Page 85

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), ReadColumn, ReadPixel,
ReadRowEx

Continued on next page

Page 86 Visual Basic Reference Guide MetaMorph

6.3 Reading and Manipulating Image Data, continued

ReadPixel

Description Reads the intensity value of a specified pixel in a selected image.

Syntax ReadPixel(hImage As Long, xPos As Integer, yPos As Integer, nRetPixelValue As

Integer) As Long

Remarks This function does not operate on 24-bit color images.

Parameters hImage Specifies the handle of the image to be read.

xPos Specifies the X-coordinate of the pixel to be read.

yPos Specifies the Y-coordinate of the pixel to be read.

Return values nRetPixelValue Returns the grayscale value of the pixel.

Example ' Read a pixel at location 43, 98 on the current image

Dim im As Long
Dim pix As Integer
MM.GetCurrentImage im
MM.ReadPixel im, 43, 98, pix

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), ReadColumn, ReadRow

ReadRow – for Visual Basic 6 & earlier

Description Reads the intensity values of a horizontal line of pixels from a selected image and

writes them into an array.

Syntax ReadRow(hImage As Long, xPos As Integer, yPos As Integer, nPixels As Integer,

depth As Integer, pixelBuffer() As Variant) As Long

Parameters hImage Specifies the handle of the image to be read.

xPos Specifies the X-coordinate of the pixel where reading should start.

yPos Specifies the Y-coordinate of the pixel where reading should start.

nPixels Specifies the number of pixels to be read, starting at the position given by
xPos and yPos. The size of the array will depend on the image bit-depth and the data
type used for the array buffer. (See Section 1.6, Data Types and Arrays.)

Continued on next page

MetaMorph Visual Basic Reference Guide Page 87

6.3 Reading and Manipulating Image Data, continued

ReadRow
(continued)

 depth Specifies what the bit-depth of the pixel data values should be. (See Section

1.6, Data Types and Arrays.)

pixelBuffer() This is a defined buffer into which the pixel values will be read. If
depth is 8, pixelBuffer should be defined as Byte. If depth is 16, pixelBuffer should be
Integer. If depth is 24, pixelBuffer should be Byte.

Return values pixelBuffer() The pixel values will be read into this predefined buffer. If the source

image is 24-bit, the array will be read out in the format B, G, R, B, G, R, etc. Thus,
array(0) will be the first blue pixel, array(1) will be the first green pixel, and so forth.
(See Parameters.)

Example ' Read a row of 50 pixels from the current image

Dim im As Long
Dim buf e (50) As Byt
MM.GetCurrentImage im
MM.ReadRow im, 0, 0, 50, 8, buf

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), ReadColumn, ReadPixel,

ReadRowEx

Page 88 Visual Basic Reference Guide MetaMorph

ReadRowEx – for Visual Basic 6 & earlier
ReadRowEx2 – for Visual Basic .NET (2002 – 2008)

Description Reads the intensity values of a horizontal line of pixels from a selected image and

writes the values into an array, starting at a specified starting location in the array.

Syntax ReadRowEx(hImage As Long, xPos As Integer, yPos As Integer, nPixels As Integer,

depth As Integer, xStart As Integer, yStart As Integer, pixelBuffer() As Variant) As
Long

Parameters hImage Specifies the handle of the image to be read.

xPos Specifies the X-coordinate of the pixel where reading should start.

yPos Specifies the Y-coordinate of the pixel where reading should start.

nPixels Specifies the number of pixels to be read, starting at the position given by
xPos and yPos. The size of the array will depend on the image bit-depth and the data
type used for the array buffer. (See Section 1.6, Data Types and Arrays.)

depth Specifies what the bit-depth of the pixel data values should be. (See Section
1.6, Data Types and Arrays.)

xStart Specifies the X-coordinate (row) of the position in the array where writing
should start.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 89

6.3 Reading and Manipulating Image Data, continued

ReadRowEx 2
(continued)

 yStart Specifies the Y-coordinate (column) of the position in the array where writing

should start.

pixelBuffer() This is a defined buffer into which the pixel values will be read. This is
a two-dimensional array. Data are always placed in the array in “column-major”
fashion. If depth is 8, pixelBuffer should be defined as Byte. If depth is 16, pixelBuffer
should be Integer. If depth is 24, pixelBuffer should be Byte.

Return values pixelBuffer() The pixel values will be read into this predefined buffer. If the source

image is 24-bit, the array will be read out in the format B, G, R, B, G, R, etc. Thus,
array(0) will be the first blue pixel, array(1) will be the first green pixel, and so forth.
(See Parameters.)

Example ' Read a 50 x 50 block of pixels from the current image

' and write it back rotated 90 degrees counterclockwise
Dim im As Long
Dim x As Integer
Dim buf(50, 50) As Byte
MM.GetCurrentImage im

For x = 0 To 49
 MM.ReadColumnEx im, x, 0, 50, 8, 0, x, buf
 MM.WriteRowEx im, 0, x + 50, 50, 8, 0, x, buf
Next x

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), ReadColumnEx,

ReadPixel, ReadRow

WriteColumn – for Visual Basic 6 & earlier

Description Reads a set of intensity values from an array and writes them to a vertical line of

pixels in a selected image.

Syntax WriteColumn(hImage As Long, xPos As Integer, yPos As Integer, nPixels As

Integer, depth As Integer, pixelBuffer() As Variant) As Long

Parameters hImage Specifies the handle of the image to be written to.

xPos Specifies the X-coordinate of the pixel where writing should start.

yPos Specifies the Y-coordinate of the pixel where writing should start.

nPixels Specifies the number of pixels to be written, starting at the position given by
xPos and yPos. The size of the array will depend on the image bit-depth and the data
type used for the array buffer. (See Section 1.6, Data Types and Arrays.)

Continued on next page

Page 90 Visual Basic Reference Guide MetaMorph

6.3 Reading and Manipulating Image Data, continued

WriteColumn
(continued)

 depth Specifies what the bit-depth of the pixel data values should be. (See Section

1.6, Data Types and Arrays.)

pixelBuffer() This is a buffer from which the pixel values will be read. If depth is 8,
pixelBuffer should be defined as Byte. If depth is 16, pixelBuffer should be Integer. If
depth is 24, pixelBuffer should be Byte.

Example ' Write a white vertical line on the current image

Dim im As Long
Dim buf(50) As Byte
Dim x As Integer

For x = 0 To 49
 buf(x) = 255
Next x

MM.GetCurrentImage im
MM.WriteColumn im, 50, 0, 50, 8, buf

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), WriteColumnEx,

WritePixel, WriteRow
WriteColumnEx – for Visual Basic 6 & earlier
WriteColumnEx2 – for Visual Basic .NET (2002 – 2008)

Description Reads a set of intensity values from a specified starting location in an array and writes

them to a vertical line of pixels in a selected image

Syntax WriteColumnEx(hImage As Long, xPos As Integer, yPos As Integer, nPixels As

Integer, depth As Integer, xStart As Integer, yStart As Integer, pixelBuffer() As
Variant) As Long
WriteColumnEx2(hImage As Long, xPos As Integer, yPos As Integer, nPixels As
Integer, depth As Integer, xStart As Integer, yStart As Integer, pixelBuffer() As
Variant) As Long

Parameters hImage Specifies the handle of the image to be written to.

xPos Specifies the X-coordinate of the pixel where writing should start.

yPos Specifies the Y-coordinate of the pixel where writing should start.

nPixels Specifies the number of pixels to be written, starting at the position given by
xPos and yPos. The size of the array will depend on the image bit-depth and the data
type used for the array buffer. (See Section 1.6, Data Types and Arrays.)

depth Specifies what the bit-depth of the pixel data values should be. (See Section
1.6, Data Types and Arrays.)

Continued on next page

MetaMorph Visual Basic Reference Guide Page 91

6.3 Reading and Manipulating Image Data, continued

WriteColumnEx
(continued)

 xStart Specifies the X-coordinate (row) of the position in the array where reading

should start.

yStart Specifies the Y-coordinate (column) of the position in the array where reading
should start.

pixelBuffer() This is a buffer from which the pixel values will be read. If depth is 8,
pixelBuffer should be defined as Byte. If depth is 16, pixelBuffer should be Integer. If
depth is 24, pixelBuffer should be Byte.

Example ' Read a 50 x 50 block of pixels from the current image

' and write it back rotated 90 degrees clockwise
Dim im As Long
Dim x As Integer
Dim buf(50, 50) As Byte

MM.GetCurrentImage im

For x 9 = 0 To 4
 MM.ReadRowEx im, 0, x, 50, 8, 0, x, buf
 MM.WriteColumnEx im, x + 50, 0, 50, 8, 0, x, buf
Next x

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), WriteColumn,

WritePixel, WriteRowEx

WritePixel

Description Writes a specified intensity value to a selected image pixel.

Syntax WritePixel(hImage As Long, xPos As Integer , yPos As Integer, pixelValue As

Integer) As Long

Remarks No pixel conversion occurs in this function. This function does not operate on 24-bit

color images.

Parameters hImage Specifies the handle of the image to be written to.

xPos Specifies the X-coordinate of the pixel where writing should start.

yPos Specifies the Y-coordinate of the pixel where writing should start.

pixelValue Provides the intensity value to be written to the selected pixel.

Continued on next page

Page 92 Visual Basic Reference Guide MetaMorph

6.3 Reading and Manipulating Image Data, continued

WritePixel
(continued)

Example ' Write a white pixel at location 50, 50 on the current image

Dim im As Long
MM.GetCurrentImage im
MM.WritePixel im, 50, 50, 255

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), ReadPixel,

WriteColumn, WriteRow

WriteRow – for Visual Basic 6 & earlier

Description Reads a set of intensity values from an array and writes them to a horizontal line of

pixels in a selected image.

Syntax WriteRow(hImage As Long, xPos As Integer, yPos As Integer, nPixels As Integer,

depth As Integer, pixelBuffer() As Variant) As Long

Parameters hImage Specifies the handle of the image to be written to.

xPos Specifies the X-coordinate of the pixel where writing should start.

yPos Specifies the Y-coordinate of the pixel where writing should start.

nPixels Specifies the number of pixels to be written, starting at the position given by
xPos and yPos. The size of the array will depend on the image bit-depth and the data
type used for the array buffer. (See Section 1.6, Data Types and Arrays.)

depth Specifies what the bit-depth of the pixel data values should be. (See Section
1.6, Data Types and Arrays.)

pixelBuffer() This is a buffer from which the pixel values will be read. If depth is 8,
pixelBuffer should be defined as Byte. If depth is 16, pixelBuffer should be Integer. If
depth is 24, pixelBuffer should be Byte.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 93

6.3 Reading and Manipulating Image Data, continued

WriteRow
(continued)

Example ' Write a white horizontal line on the current image

Dim im As Long
Dim buf(50) As Byte
Dim x As Integer

For x = 0 To 49
 buf(x) = 255
Next x

MM.GetCurrentImage im
MM.WriteRow im, 50, 0, 50, 8, buf

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), WriteColumn,

WritePixel, WriteRowEx

WriteRowEx – for Visual Basic 6 & earlier
WriteRowEx2 – for Visual Basic .NET (2002 – 2008)

Description Reads a set of intensity values from a specified starting location in an array and writes

them to a horizontal line of pixels in a selected image

Syntax WriteRowEx(hImage As Long, xPos As Integer, yPos As Integer, nPixels As Integer,

depth As Integer, xStart As Integer, yStart As Integer, pixelBuffer() As Variant) As
Long
WriteRowEx2(hImage As Long, xPos As Integer, yPos As Integer, nPixels As
Integer, depth As Integer, xStart As Integer, yStart As Integer, pixelBuffer() As
Variant) As Long

Page 94 Visual Basic Reference Guide MetaMorph

Parameters hImage Specifies the handle of the image to be written to.

xPos Specifies the X-coordinate of the pixel where writing should start.

yPos Specifies the Y-coordinate of the pixel where writing should start.

nPixels Specifies the number of pixels to be written, starting at the position given by
xPos and yPos. The size of the array will depend on the image bit-depth and the data
type used for the array buffer. (See Section 1.6, Data Types and Arrays.)

depth Specifies what the bit-depth of the pixel data values should be. (See Section
1.6, Data Types and Arrays.)

xStart Specifies the X-coordinate (row) of the position in the array where reading
should start.

yStart Specifies the Y-coordinate (column) of the position in the array where reading
should start.

pixelBuffer() This is a buffer from which the pixel values will be read. If depth is 8,
pixelBuffer should be defined as Byte. If depth is 16, pixelBuffer should be Integer. If
depth is 24, pixelBuffer should be Byte.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 95

6.3 Reading and Manipulating Image Data, continued

WriteRowEx2
(continued)

Example ' Read a 50 x 50 block of pixels from the current image

' and write it back rotated 90 degrees clockwise
Dim im As Long
Dim x As Integer
Dim buf(50, 50) As Byte

MM.GetCurrentImage im

For x 9 = 0 To 4
 MM.ReadRowEx im, 0, x, 50, 8, 0, x, buf
 MM.WriteColumnEx im, x + 50, 0, 50, 8, 0, x, buf
Next x

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), WriteColumnEx,

WritePixel, WriteRow

WriteText

Description Writes a specified string of text onto an image.

Syntax WriteText(hImage As Long, xPos As Integer, yPos As Integer, text As String,

fillBackground As Boolean, foreColor As Integer, backColor As Integer) As Long

Parameters hImage Specifies the handle of the destination image.

xPos Specifies the X-coordinate where writing of the text is to start.

yPos Specifies the Y-coordinate where writing of the text is to start.

text Provides the string of text that will be written onto the image.

fillBackground Selects whether the area behind the text is to be filled in with an
opaque background of a grayscale value selected by backColor. If fillBackground is
set to TRUE, a background “fill” will be used. If fillBackground is set to FALSE, no
“fill” will be used, and backColor will be ignored.

foreColor Specifies the grayscale value of the text.

backColor Specifies the grayscale value of the “fill” behind the text on the image.

Example ' Write "Nerve Cell" at the top of the current image

Dim im As Long
MM.GetCurrentImage im
MM.WriteText im, 50, 20, "Nerve Cell", TRUE, 255, 0

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3)

Page 96 Visual Basic Reference Guide MetaMorph

Chapter 7 − Working with Regions of Interest

7.1 Overview

Introduction A region of interest, or ROI, is an area in an image window that you define and

specify for subsequent processing and analysis. For the purposes of user programs,
MetaMorph only uses rectangular regions. If you need to use elliptical, linear, or
irregularly shaped regions, you will need to use a journal to manipulate them. This
chapter presents the Visual Basic functions that you will need for creating and
manipulating regions and for measuring and obtaining data from regions.

In this chapter This chapter contains the following topics:

Topic See Page

Creating and Removing Regions 97

Finding Regions 99

Reading and Manipulating Region Properties 103

Reading Image Data from Regions 109

MetaMorph Visual Basic Reference Guide Page 97

7.2 Creating and Removing Regions

Introduction The following functions are used for creating and removing regions of interest. At the

time you create an ROI, MetaMorph assigns it a handle, just as it assigns handles to
functions and entire image windows. All of the remaining functions that involve
regions in this chapter will need to be supplied with the region handle. If you need to
obtain the handle after you have already created the region, you will need to use the
GetRegion or GetActiveRegion functions which are covered in Section 7.3.

CreateRectRegion

Description Creates a rectangular region of interest in a specified image. You can specify the size

and placement of a region you create simply by dictating the locations of its four
corners.

Syntax CreateRectRegion(hImage As Long, x1 As Integer, y1 As Integer, x2 As Integer, y2

As Integer, hRetRegion As Long) As Long

Parameters hImage Specifies the handle of the image in which the region is to be created.

x1 Specifies the X-coordinate of the upper left corner of the region.

y1 Specifies the Y-coordinate of the upper left corner of the region.

x2 Specifies the X-coordinate of the lower right corner of the region.

y2 Specifies the Y-coordinate of the lower right corner of the region.

Return values hRetRegion Returns the handle for the created region.

Example ' Create a recangular region on the current image

Dim im As Long
Dim r As Long
MM.GetCurrentImage im
MM.CreateRectRegion im, 10, 10, 50, 50, r

See also: DestroyRegion, GetCurrentImage (Section 4.3), GetImage (Section 4.3),

SetActiveRegion (Section 6.4)

Continued on next page

Page 98 Visual Basic Reference Guide MetaMorph

7.2 Creating and Removing Regions, continued

DestroyRegion

Description Removes the specified region of interest.

Syntax DestroyRegion(hRegion As Long) As Long

Parameters hRegion Specifies the handle of the region to be removed. The handle can be

obtained with the GetRegion function.

Example ' Delete the active region on the current image, if there

' is one
Dim im As Long
Dim r As Long

MM.GetCurrentImage im
MM.GetActiveRegion im, r

If r <> 0 Then
 MM.DestroyRegion r
Else
 MM.PrintMsg "No active region on the current image"
End If

See also: GetRegion (Section 7.3), GetActive Region (Section 7.3)

MetaMorph Visual Basic Reference Guide Page 99

7.3 Finding Regions

Introduction The functions in this section are essential for the control of procedures involving

regions. These functions are used for finding a region’s handle, the “indexing tag”
that both Visual Basic and MetaMorph use to keep track of the region, as well as for
determining how many regions have been defined and whether a handle is currently in
use. The GetActiveRegion and GetRegion functions, which obtain a region’s handle,
are particularly important, and you will see these two functions referenced in the “See
Also” lists throughout the rest of this chapter.

GetActiveRegion

Description Obtains the handle number of the active region, if any, in a specified image.

Syntax GetActiveRegion(hImage As Long, lRetActiveRegion As Long) As Long

Parameters hImage Specifies the handle of the image.

Return values lRetActiveRegion Returns the handle of the active region. If there is no active region,

the value will be returned as 0. Note: An image can contain regions without any of
them being active.

Example ' Delete the active region on the current image, if there

' is one
Dim im As Long
Dim r As Long

MM.GetCurrentImage im
MM.GetActiveRegion im, r

If r <> 0 Then
 MM.DestroyRegion r
Else
 MM.PrintMsg "No active region on the current image"
End If

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetRegion,

SetActiveRegion

Continued on next page

Page 100 Visual Basic Reference Guide MetaMorph

7.3 Finding Regions, continued

GetNumberOfRegions

Description Returns the number of regions that exist on a specified image.

Syntax GetNumberOfRegions(hImage As Long, nRetNumberOfRegions As Integer) As

Long

Parameters hImage Specifies the handle of the image.

Return values nRetNumberOfRegions Returns the number of regions that currently exist on the

image.

Example ' Get the number of regions on the current image

Dim im As Long
Dim rCount As Integer

MM.GetCurrentImage im

MM.GetNumberOfRegions im, rCount
MM.PrintMsg "There are " + Str(rCount) + " regions on the
 current image"

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3)

GetRegion

Description Obtains the handle number of a specified region.

Syntax GetRegion(hImage As Long, index As Integer, lRetRegion As Long) As Long

Remarks All of the regions loaded in MetaMorph have an index number, from 0 to (n – 1),

where n is the number of loaded regions. Regions are numbered according to their
order of creation; thus, the first region is 0, the next is 1, and so on.

Parameters hImage Specifies the handle of the image.

index Specifies the number of the region. (See Remarks.)

Return values lRetRegion Returns the handle of the selected region. (Note: The handle is a number

used by MetaMorph to carry out programmatic functions. This differs from the index
number associated with the region.) If an error occurs, for example, if index is not a
valid number, lRetRegion will contain 0.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 101

7.3 Finding Regions, continued

GetRegion
(continued)

Example ' Get the first region on the current image

Dim im As Long
Dim r g As Lon
MM.GetRegion im, 0, r

See also: GetActiveRegion, GetCurrentImage (Section 4.3), GetImage (Section 4.3)

IsValidRegion

Description Tests whether or not the region handle you pass is valid.

Syntax IsValidRegion(hRegion As Long) As Long

Parameters hRegion Specifies the handle of the region in question. If the handle value that you

pass is not valid, IsValidRegion returns a value of “0”. The function will return a
nonzero value if the region handle is valid.

Example ' Check if some region is valid, and if it is, make it the

' active region. 'r' and 'im' are region and image handles
' that were declared and used previous to the code here.

If MM.IsValidRegion(r) <> 0 Then
 MM.PrintMsg n is valid" "Regio
 MM.SetActiveRegion im, r
Else
 MM.PrintMsg "Region is no longer valid"
End If

See also: GetRegion

Continued on next page

Page 102 Visual Basic Reference Guide MetaMorph

7.3 Finding Regions, continued

SetActiveRegion

Description Makes a selected region the active region.

Syntax SetActiveRegion(hImage As Long, hRegion As Long) As Long

Parameters hImage Specifies the handle of the image.

hRegion Specifies the handle of the region to be made active.

Example ' Check if some region is valid, and if it is, make it the

' active region. 'r' and 'im' are region and image handles
' that were declared and used previous to the code here.

If MM.IsValidRegion(r) <> 0 Then
 MM.PrintMsg n is valid" "Regio
 MM.SetActiveRegion im, r
Else
 MM.PrintMsg "Region is no longer valid"
End If

See also: GetCurrentImage (Section 4.3), GetImage (Section 4.3), GetRegion

MetaMorph Visual Basic Reference Guide Page 103

7.4 Reading and Manipulating Region Properties

Introduction It is often necessary or useful to obtain information about a region, such as its width,

height, area, perimeter, or location. The functions that follow can be used to read or
configure such region properties, as well as to obtain the X and Y coordinates of the
region’s outline. One programming example is given for all of the region property
“Get” functions (see Figure 7.1 on page 106).

GetRegionArea

Description Obtains the area, expressed as the number of pixels, of a specified region of interest.

Syntax GetRegionArea(hRegion As Long, lRetArea As Long) As Long

Parameters hRegion Specifies the handle of the region in question.

Return values lRetArea Returns the number of pixels in the region.

See also: GetActiveRegion (Section 7.3), GetRegion (Section 7.3), GetRegionSize

GetRegionDistance

Description Obtains the perimeter of a specified region of interest. The distance measurement will

be reported in calibrated units.

Syntax GetRegionDistance(hRegion As Long, dRetDistance As Double) As Long

Remarks This function differs from RegionGetNumEdgePixels in its expression of the

perimeter in calibrated units. RegionGetNumEdgePixels expresses the perimeter in
terms of the number of pixels.

Parameters hRegion Specifies the handle of the region in question.

Return values dRetDistance Returns the perimeter of the region, in calibrated units.

See also: GetActiveRegion (Section 7.3), GetRegion (Section 7.3),

RegionGetNumEdgePixels

Continued on next page

Page 104 Visual Basic Reference Guide MetaMorph

7.4 Reading and Manipulating Region Properties, continued

GetRegionPosition

Description Obtains the on-screen position of a specified region of interest.

Syntax GetRegionPosition(hRegion As Long, nRetXPos As Integer, nRetYPos As Integer)

As Long

Parameters hRegion Specifies the handle of the region in question.

Return values nRetXPos Returns the starting (upper left) X-coordinate of the specified region.

nRetYPos Returns the starting Y-coordinate of the specified region.

See also: GetActiveRegion (Section 7.3), GetRegion (Section 7.3), GetRegionSize,

SetRegionPosition

GetRegionSize

Description Obtains the width and height of a specified region of interest.

Syntax GetRegionSize(hRegion As Long, nRetXSize As Integer, nRetYSize As Integer) As

Long

Parameters hRegion Specifies the handle of the region in question.

Return values nRetXSize Returns the width, in pixels, of the specified region.

nRetYSize Returns the height, in pixels, of the specified region.

See also: GetActiveRegion (Section 7.3), GetRegion (Section 7.3), GetRegionArea,

GetRegionPosition, SetRegionSize

Continued on next page

MetaMorph Visual Basic Reference Guide Page 105

7.4 Reading and Manipulating Region Properties, continued

RegionGetNumEdgePixels

Description Obtains the perimeter of a specified region of interest. The distance measurement will

be reported in terms of the number of pixels.

Syntax RegionGetNumEdgePixels(hRegion As Long, lNumPixels As Long) As Long

Remarks RegionGetNumEdgePixels returns in lNumPixels the number of pixels comprising

the edge of the given region. This function will usually be used in conjunction with
RegionGetEdgePixelCoordinates. You would call RegionGetNumEdgePixels first
to determine how big to make the arrays you pass to
RegionGetEdgePixelCoordinates.

Parameters hRegion Specifies the handle of the region in question.

Return values lNumPixels Returns the perimeter of the region, in pixels.

See also: GetActiveRegion (Section 7.3), GetRegion (Section 7.3), GetRegionDistance

RegionGetEdgePixelCoordinates – for Visual Basic 6 & earlier
RegionGetEdgePixelCoordinatesEx2 – for Visual Basic .NET (2002 – 2008)

Description Obtains the X and Y coordinates of all the pixels lying under the edge of a region.

Syntax RegionGetEdgePixelCoordinates(hRegion As Long, lBufferSize As Long,

aRetXBuffer() As Integer, aRetYBuffer() As Integer) As Long
RegionGetEdgePixelCoordinatesEx2(hRegion As Long, lBufferSize As Long,
aRetXBuffer() As Integer, aRetYBuffer() As Integer) As Long

Parameters hRegion Specifies the handle of the region in question.

lBufferSize Sets the size of the array into which the X and Y coordinates will be
read. You can use RegionGetNumEdgePixels to determine how many pixels that
should be.

Return values aRetXBuffer() Returns the X-coordinates of the pixels lying under the edge of the

region. The size of this array will be determined by the number of pixels in the
edgelist.

aRetYBuffer() Returns the Y-coordinates of the pixels lying under the edge of the
region. The size of this array will be determined by the number of pixels in the
edgelist.

See also: GetActiveRegion (Section 7.3), GetRegion (Section 7.3),

RegionGetNumEdgePixels

Continued on next page

Page 106 Visual Basic Reference Guide MetaMorph

7.4 Reading and Manipulating Region Properties, continued

Figure 7.1 Region Property “Get” Function Programming Example

' Get property information about the active region

Dim im As Long
Dim r As region

MM.GetCurrentImage im
MM.GetActiveRegion im, r

Dim area As Long
MM.GetRegionArea r, area
MM.PrintMsg "Pixel area of the active region is " + Str(area)

Dim distance As Double
MM.GetRegionDistance r, distance
MM.PrintMsg "Calibrated perimeter of the active region is "
 + Str(distance)

Dim x As Integer, y As Integer
MM.GetRegionPosition r, x, y
Dim dx r, dy As Integer As Intege
MM.GetRegionSize r, dx, dy
MM.PrintMsg "Position of the region is " + Str(x) + ", "
 + y Str()
MM.PrintMsg "Size of the region is " + Str(dx) + ", "
 + Str(dy)

Dim numpix As Long
' First find out how many pixels are in the edge of
' the region
MM.RegionGetNumEdgePixels r, numpix

' Then get the coordinates of all the edge pixels
Dim x numpix y numpix) As Integer () As Integer, (
MM.RegionGetEdgePixelCoordinates r, numpix, x, y

Continued on next page

MetaMorph Visual Basic Reference Guide Page 107

7.4 Reading and Manipulating Region Properties, continued

SetRegionPosition

Description Moves a selected region of interest to a specified position.

Syntax SetRegionPosition(hRegion As Long, xPos As Integer, yPos As Integer) As Long

Parameters hRegion Specifies the handle of the region in question.

xPos Specifies the X-coordinate of the new starting point (upper left corner) of the
selected region.

yPos Specifies the Y-coordinate of the new starting point of the selected region.

Example ' Move the active region to the upper left corner of the image

' and make it 100 x 100 pixels in size

Dim im As Long
Dim r As Long

MM.GetCurrentImage im
MM.GetActiveRegion im, r

MM.SetRegionPosition r, 0, 0
MM.SetRegionSize r, 100, 100

See also: GetRegion (Section 7.3), GetRegionPosition

SetRegionSize

Description Resizes a selected region of interest to a specified width and height.

Syntax SetRegionSize(hRegion As Long, xSize As Integer, ySize As Integer) As Long

Parameters hRegion Specifies the handle of the region in question.

xSize Specifies the new width, in pixels, of the selected region.

ySize Specifies the new height, in pixels, of the selected region.

Continued on next page

Page 108 Visual Basic Reference Guide MetaMorph

7.4 Reading and Manipulating Region Properties, continued

SetRegionSize
(continued)

Example ' Move the active region to the upper left corner of the image

' and make it 100 x 100 pixels in size

Dim im As Long
Dim r As Long

MM.GetCurrentImage im
MM.GetActiveRegion im, r

MM.SetRegionPosition r, 0, 0
MM.SetRegionSize r, 100, 100

See also: GetActiveRegion (Section 7.3), GetRegion (Section 7.3), GetRegionSize

SwapRegionNumbers

Description Exchanges the numbers associated with two selected regions.

Syntax SwapRegionNumbers(rhRegion1 As Long, rhRegion2 As Long)

Parameters rhRegion1 Specifies the handle of one of the two selected regions.

rhRegion2 Specifies the handle of the other selected region.

See also: GetActiveRegion (Section 7.3), GetRegion (Section 7.3)

MetaMorph Visual Basic Reference Guide Page 109

7.5 Reading Image Data from Regions

Introduction This section describes a number of functions which are invaluable for obtaining

grayscale information from a region of interest. You can derive the minimum,
maximum, and average intensity value in a region, as well as the standard deviation
around the mean. One programming example is given for all of the region data “Get”
functions (see Figure 7.2 on page 112). You will need to apply the MeasureRegion
function as a preliminary step to obtaining these data. If your images have been
calibrated in MetaMorph with the Calibrate Distances or Calibrate Gray Levels
commands, the “read” functions in this section will return data expressed in calibrated
units, rather than as numbers of pixels or as grayscale levels.

GetRegionAverageValue

Description Obtains the average of all of the grayscale values in a specified region of interest.

Syntax GetRegionAverageValue(hRegion As Long, dRetAverageValue As Double) As Long

Remarks Before you apply this function, the region must first be measured with the

MeasureRegion function.

Parameters hRegion Specifies the handle of the region.

Return values dRetAverageValue Returns the average intensity value from the region.

See also: GetActive Region (Section 7.3), GetRegion (Section 7.3),

GetRegionMaximumValue, GetRegionMinimumValue, GetRegionStdDeviation,
MeasureRegion

GetRegionMinimumValue

Description Obtains the lowest grayscale value in a specified region of interest.

Syntax GetRegionMinimumValue(hRegion As Long, dRetMinValue As Double) As Long

Remarks Before you apply this function, the region must first be measured with the

MeasureRegion function.

Parameters hRegion Specifies the handle of the region.

Return values dRetMinValue Returns the minimum intensity value in the region.

See also: GetActive Region (Section 7.3), GetRegion (Section 7.3),

GetRegionAverageValue, GetRegionMaximumValue, GetRegionStdDeviation,
MeasureRegion

Continued on next page

Page 110 Visual Basic Reference Guide MetaMorph

7.5 Reading Image Data from Regions, continued

GetRegionMaximumValue

Description Obtains the highest grayscale value in a specified region of interest.

Syntax GetRegionMaximumValue(hRegion As Long, dRetMaxValue As Double) As Long

Remarks Before you apply this function, the region must first be measured with the

MeasureRegion function.

Parameters hRegion Specifies the handle of the region.

Return values dRetMaxValue Returns the maximum intensity value in the region.

See also: GetActive Region (Section 7.3), GetRegion (Section 7.3),

GetRegionAverageValue, GetRegionMinimumValue, GetRegionStdDeviation,
MeasureRegion

GetRegionStdDeviation

Description Obtains the standard deviation of the grayscale values in a specified region of interest.

Syntax GetRegionStdDeviation(hRegion As Long, dRetStdDeviation As Double) As Long

Remarks Before you apply this function, the region must first be measured with the

MeasureRegion function.

Parameters hRegion Specifies the handle of the region.

Return values dRetStdDeviation Returns the standard deviation of the intensity values in the region.

See also: GetActive Region (Section 7.3), GetRegion (Section 7.3),

GetRegionAverageValue, GetRegionMaximumValue,
GetRegionMinimumValue, MeasureRegion

Continued on next page

MetaMorph Visual Basic Reference Guide Page 111

7.5 Reading Image Data from Regions, continued

GetRegionThresholdArea

Description Obtains the number of pixels in a specified region that are inside the current

threshold.

Syntax GetRegionThresholdArea(hRegion As Long, lRetArea As Long) As Long

Remarks Before you apply this function, the region must first be measured with the

MeasureRegion function.

Parameters hRegion Specifies the handle of the region.

Return values lRetArea Returns the number of thresholded pixels in the region.

See also: GetActive Region (Section 7.3), GetRegion (Section 7.3), MeasureRegion

MeasureRegion

Description Measures the grayscale data in a specified region of interest of an image.

Syntax MeasureRegion(hRegion As Long, hImage As Long, bUseThreshold As Boolean) As

Long

Parameters hRegion Specifies the handle of the region.

hImage Specifies the handle of the image.

bUseThreshold Determines whether the measurement will be made of just those
pixels that are thresholded, or if all pixels are to be measured. If only thresholded
pixels are to be measured, bUseThreshold should be set to TRUE. If all pixels are to
be measured, set bUseThreshold to FALSE.

See also: GetActive Region (Section 7.3), GetCurrentImage (Section 4.3), GetImage

(Section 4.3), GetRegion (Section 7.3)

Continued on next page

Page 112 Visual Basic Reference Guide MetaMorph

7.5 Reading Image Data from Regions, continued

Figure 7.2 Region Data “Get” Function Programming Example

' Measure the active region on the current image and print
' out the information that was measured

Dim im As Long
Dim r As region

MM.GetCurrentImage im
MM.GetActiveRegion r

MM.MeasureRegion r, im, FALSE ' Do not use threshold
Dim average As Double
Dim min As Double
Dim max As Double
Dim stddev As Double
Dim area As Long
MM.GetRegionAverageValue r, average
MM.GetRegionMinimumValue r, min
MM.GetRegionMaximumValue r, max
MM.GetRegionStdDeviation r, stddev
MM.GetRegionThresholdArea r, area

MM.PrintMsg "Average is " + Str(average)
MM.PrintMsg "Minimum is " + Str(min)
MM.PrintMsg "Maximum is " + Str(max)
MM.PrintMsg "Standard deviation is " + Str(stddev)
MM.PrintMsg "Threshold area should be 0, because the
 region was"

MM.PrintMsg "Measured without thresholding. The area is: "
 + Str(area)

MetaMorph Visual Basic Reference Guide Page 113

Chapter 8 − Performing Morphometry

8.1 Overview

Introduction As the premier morphometric analysis system, MetaMorph offers an extensive

array of functions for measurement and analysis of image objects. This chapter
discusses the Visual Basic functions that you will need for configuring your
morphometric measurements, creating classifier filters, and measuring objects.
The operative function that measures your image, MorphMeasureObjects, is
covered in Section 8.5. Before you can apply this function, however, please
remember to define a threshold range, as detailed in Section 6.2, Applying
Thresholding.

In this chapter This chapter contains the following topics:

Topic See Page

Configuring Measurement Preferences 114

Configuring Object Measurements 115

Configuring Classifier Filters 119

Measuring All Objects in an Image 121

Measuring Single Objects 126

Page 114 Visual Basic Reference Guide MetaMorph

8.2 Configuring Measurement Preferences

Introduction Before you measure your images, you may want to configure MetaMorph’s behavior

during the measurement procedure. The settings you use for the two functions that
follow will determine two types of behavior: whether objects that “fail” a classifier
filter (see Section 8.4) are redrawn in the result image, and whether “holes”
(unthresholded areas in the middle of an object) are “filled” prior to measurement.

MorphSetDrawFailedObjectsFlag

Description Sets whether objects that fail to pass any classifiers should be drawn in the resultant

measurement image.

Syntax MorphSetDrawFailedObjectsFlag(bRedraw As Boolean) As Long

Parameters bRedraw Determines whether failed objects will be drawn. If bRedraw is set to

TRUE, failed objects will be drawn. If bRedraw is set to FALSE, failed objects will
not be drawn.

Example ' The next time measurements are performed, don't draw objects

' that don't pass any classifiers and fill holes in objects
MM.MorphSetDrawFailedObjectsFlag FALSE
MM.MorphSetFillHoleFlag TRUE

MorphSetFillHoleFlag

Description Sets whether “holes” (unthresholded areas enclosed within thresholded areas) will be

filled in (treated as thresholded) when measurement occurs.

Syntax MorphSetFillHoleFlag(bRedraw As Boolean) As Long

Remarks If bRedraw is TRUE, they will be filled in. If FALSE, they will not be.

Parameters bRedraw Determines whether or not holes are to be filled. If bRedraw is set to

TRUE, holes will be filled and subsequent measurements will include their areas. If
bRedraw is set to FALSE, holes will not be filled.

Example ' The next time measurements are performed, don't draw objects

' that don't pass any classifiers and fill holes in objects
MM.MorphSetDrawFailedObjectsFlag FALSE
MM.MorphSetFillHoleFlag TRUE

MetaMorph Visual Basic Reference Guide Page 115

8.3 Configuring Object Measurements

Introduction Just as image windows, functions, and regions are manipulated by their handles, so

too are object parameters manipulated by using an index number, the parameter
number. Several configuration and measurement functions depend on the correct
parameter number being passed to them. In this section, we discuss several functions
that allow you to obtain a parameter’s number, or to obtain other information about a
parameter based on the number you pass. In addition, another measurement
configuration function, MorphSetupMeasurements, is used for specifying the image
to be measured and a second image, the mask image, which will be used to define the
distribution of the thresholding overlay.

MorphFindParmIndex

Description Obtains the number of a specified parameter.

Syntax MorphFindParmIndex(sParmName As String, nRetParmNumber As Integer) As

Long

Parameters sParmName Specifies the name of the parameter for which you want to obtain a

parameter number. The parameter names that you can use consist of those used for the
MetaMorph morphometry functions. You can see these names in the Configure
Object Classifiers, Configure Object Measurements, or Integrated Morphometry
Analysis dialog boxes.

Return values nRetParmNumber Returns the number of the parameter specified by sParmName. If

no parameter by that name exists, nRetParmNumber will be returned as -1.

Example ' Find the width of object 5. This code assumes that

' measurements have already been made.
Dim I As Integer
Dim nWidth As Single
MM.MorphFindParmIndex "Width", n
MM.MorphGetParmMeasurement 5, n, nWidth
MM.PrintMsg "The width of object 5 is " + Str(nWidth)

See also: MorphGetParmDescription, MorphGetParmMeasurement (Section 8.6),

MorphGetParmName

Continued on next page

Page 116 Visual Basic Reference Guide MetaMorph

8.3 Configuring Object Measurements, continued

MorphGetNumberOfParms

Description Obtains the total number of measurable parameters.

Syntax MorphGetNumberOfParms(nRetParms As Integer) As Long

Return values nRetParms Returns the total number of measurable parameters.

Example ' Print out the names and descriptions of all the measurement

' parameters

Dim nParms As Integer
Dim i As Integer
Dim parmName As String
Dim desc As String

MM.MorphGetNumberOfParms nParms
For i nParms 1 = 0 To -
 MM.MorphGetParmName i parmName ,
 MM.MorphGetParmDescription i, desc
 MM.PrintMsg parmName + ": " + desc
Next i

MorphGetParmDescription

Description Obtains a description of a parameter for which you have a parameter number.

Syntax MorphGetParmDescription(nParmNumber As Integer, sRetParmDescription As

String) As Long

Parameters nParmNumber Specifies the number of the parameter for which you want to obtain a

description. This number can be obtained with the MorphFindParmIndex function.

Return values sRetParmDescription Returns a textual description of the parameter in question.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 117

8.3 Configuring Object Measurements, continued

MorphGetParmDescription
(continued)

Example ' Print out the names and descriptions of all the measurement

' parameters

Dim nParms As Integer
Dim i As Integer
Dim parmName As String
Dim desc As String

MM.MorphGetNumberOfParms nParms
For i = 0 To nParms - 1
 MM.MorphGetParmName i, parmName
 MM.MorphGetParmDescription i, desc
 MM.PrintMsg parmName + ": " + desc
Next i

See also: MorphFindParmIndex, MorphGetParmName

MorphGetParmName

Description Obtains the name of a parameter for which you have a parameter number.

Syntax MorphGetParmName(nParmNumber As Integer, sRetParmName As String) As

Long

Parameters nParmNumber Specifies the number of the parameter for which you want to obtain a

description. This number can be obtained with the MorphFindParmIndex function.

Return values sRetParmName Returns the name of the parameter in question.

Example ' Print out the names and descriptions of all the measurement

' parameters

Dim nParms As Integer
Dim i As Integer
Dim parmName As String
Dim desc As String

MM.MorphGetNumberOfParms nParms
For i nParms 1 = 0 To -
 MM.MorphGetParmName i, parmName
 MM.MorphGetParmDescription i, desc
 MM.PrintMsg parmName + ": " + desc
Next i

See also: MorphFindParmIndex, MorphGetParmDescription

Continued on next page

Page 118 Visual Basic Reference Guide MetaMorph

8.3 Configuring Object Measurements, continued

MorphSetupMeasurements

Description Selects images to be used as measurement and mask images for subsequent

measurement with MorphMeasureObjects.

Syntax MorphSetupMeasurements(hGrayImage As Long, hMaskImage As Long, fStdArea

As Single) As Long

Remarks This function selects the measurement image and mask image for use in subsequent

measurements with MorphMeasureObjects. Also, if you want to count objects, this
function allows you to define and make measurements with a standard area.
Counting objects can sometimes be difficult because they may overlap or are poorly
defined in the image. A standard area is a value that you believe represents the area of
a standard object, based on the assumption that the objects being measured are of a
fairly uniform size. The clumps of objects will be counted by dividing the area of the
clump by the standard area.

If you are not interested in using a standard area, you can set fStdArea to 1.

Parameters hGrayImage Specifies the handle of the image to be used for measurement. Image

handles can be obtained with GetImage.

hMaskImage Specifies the handle of the image to be used as a mask image.
Typically, hMaskImage is an image created by setting a threshold on hGrayImage and
then using BinarizeImage to create a binary image from that.

fStdArea Defines the size of the standard area. The units used depends on whether
you have calibrated the image for distance.

Example ' Create a binary mask of the current image and then measure

' the image
Dim im As Long

' Put a threshold on the current image
MM.GetCurrentImage im
MM.SetThresholdState im, 1
MM.SetThresholdRange im, 50, 150

' Create the binarized image
Dim bin g As Lon
MM.CreateImage 512, 512, 1, "binary image", bin
MM.BinarizeImage im, bin

' Measure
MM.MorphSetupMeasurements im, bin, 1#
MM.MorphMeasureObjects TRUE

See also: BinarizeImage (Section 6.3), GetCurrentImage (Section 4.3), GetImage (Section

4.3), MorphMeasureObjects (Section 8.5)

MetaMorph Visual Basic Reference Guide Page 119

8.4 Configuring Classifier Filters

Introduction Classifier filters are morphometric measurement ranges through which an object’s

measurements must “pass” to be included in the final set. Using a classifier filter, you
can restrict your measurements to just those objects that meet your set criteria, while
excluding other classes of objects. The two functions which follow are used for
reading the current settings of a classifier filter for a specified parameter and for
configuring those settings.

MorphGetFilter

Description Obtains the settings of the classifier filter for a specified parameter.

Syntax MorphGetFilter(nClassifierNumber As Integer, nParmNumber As Integer,

fRetMinVal As Single, fRetMaxVal As Single, bRetInclusive As Boolean,
bRetEnableFilter As Boolean) As Long

Parameters nClassifierNumber Specifies the number of the classifier filter in question (0 – 7).

This classifier is one you will have defined, and the number is one you will have
assigned with the MorphSetFilter function.

nParmNumber Specifies the parameter number of the classifier for which the filter is
being configured. This number can be obtained with the MorphFindParmIndex
function. These predefined classifiers are those that correspond to the parameters used
for the MetaMorph morphometry functions. You can see these parameters in the
Configure Object Classifiers, Configure Object Measurements, or Integrated
Morphometry Analysis dialog boxes.

Return values fRetMinVal Returns the minimum value of the filter.

fRetMaxVal Returns the maximum value of the filter.

bRetInclusive Indicates whether the range minimum and maximum are inclusive
(that is, the filter “passes” objects if they have values between the minimum and
maximum) or exclusive (that is, the filter “passes” objects if they have values equal to
or outside the minimum and maximum). If the filter has been set to the inclusive state,
a bRetInclusive value of TRUE will be returned. If the filter is exclusive, a value of
FALSE will be returned.

bRetEnableFilter Indicates whether the filter is active or not. If the filter is active,
bRetEnableFilter will return with a value of TRUE. If the filter is inactive, a value of
FALSE will be returned.

Continued on next page

Page 120 Visual Basic Reference Guide MetaMorph

8.4 Configuring Classifier Filters, continued

MorphGetFilter
(continued)

Example ' Tell the first filter to stop filtering on total area, while

' leaving the filtering parameters unchanged.
Dim min As Single, max As Single
Dim inclusive As Boolean, enable As Boolean
MM.MorphGetFilter 0, 0, min, max, inclusive, enable
MM.MorphSetFilter 0, 0, min, max, inclusive, FALSE

See also: MorphFindParmIndex (Section 8.3), MorphSetFilter

MorphSetFilter

Description Configures the settings of a classifier filter for a specified parameter.

Syntax MorphSetFilter(nClassifierNumber As Integer, nParmNumber As Integer, fMinVal

As Single, fMaxVal As Single, bInclusive As Boolean, bEnableFilter As Boolean) As
Long

Parameters nClassifierNumber Specifies a number for the classifier (0 – 7). Typically, this

number will be based on the order of configuration.

nParmNumber Specifies the parameter number of the classifier for which the filter
is being configured. This number can be obtained with the MorphFindParmIndex
function.

fMinVal Specifies the minimum value of the filter.

fMaxVal Specifies the maximum value of the filter.

bInclusive Specifies whether the range minimum and maximum are to be inclusive
(that is, the filter will “pass” objects that have values between the minimum and
maximum) or exclusive (that is, the filter will “pass” objects that have values equal to
or outside the minimum and maximum). To set the filter to the inclusive state, assign
a value of TRUE to bInclusive. To make the filter exclusive, assign a value of
FALSE.

bEnableFilter Specifies whether the filter will be active or inactive. To activate the
filter, set bEnableFilter to TRUE. To deactivate the filter, assign a value of FALSE.

Example ' Set the first filter to only pass objects whose total area

' is between 10 and 50.
MM.MorphSetFilter 0, 0, 10, 50, TRUE, TRUE

See also: MorphFindParmIndex (Section 8.3), MorphGetFilter

MetaMorph Visual Basic Reference Guide Page 121

8.5 Measuring All Objects in an Image

Introduction MetaMorph automatically measures all objects in an image, but the resulting data are

managed either as a group or on an object-by-object basis. Data for the entire group
are presented as a statistical summary, and can be saved in a summary log. The
functions in this section deal with obtaining and managing group measurement data.
This includes the important MorphMeasureObjects function. (For a discussion of
single object measurement functions, see Section 8.6.)

MorphDeleteObject

Description Removes a specified object from the list of measured objects.

Syntax MorphDeleteObject(nObjectID As Integer) As Long

Remarks You can prevent a specific object from having a contribution to the summary data by

using this function in conjunction with MorphRecalc.

Parameters nObjectID Specifies the number of the object to be deleted. Objects are numbered

from 0 to (n – 1), where n is the total number of objects.

Example ' Delete object 4 from the morph summary data. This code

' assumes measurements have already been performed.
MM.MorphDeleteObject 4
MM.MorphRecalc

See also: MorphRecalc

MorphGetNumberOfObjects

Description Obtains the number of objects that were last measured by MorphMeasureObjects.

Syntax MorphGetNumberOfObjects(nRetObjects As Integer) As Integer

Return values nRetObjects Returns the number of objects that were measured.

See also: MorphMeasureObjects

Continued on next page

Page 122 Visual Basic Reference Guide MetaMorph

8.5 Measuring All Objects in an Image, continued

MorphGetParmAccumSummary

Description Obtains the cumulative statistics for all objects that passed a specified classifier filter

for a selected parameter. This function returns the same information as
MorphGetParmSummary, but combines the information with all previous
measurements that have been made using the selected classifier filter.

Syntax MorphGetParmAccumSummary(nClassifierNumber As Integer, nParmNumber As

Integer, lRetCount As Long, fRetAverage As Single, fRetMinVal As Single,
fRetMaxVal As Single, fRetStdDeviation As Single, fRetTotal As Single) As Long

Parameters nClassifierNumber Specifies the classifier number (0 – 7). This number is one that

you will have assigned with the MorphSetFilter function.

nParmNumber Specifies the parameter number of the classifier filter. This number
can be obtained with the MorphFindParmIndex function.

Return values lRetCount Returns the total number of objects which passed the classifier.

fRetAverage Returns the average value of the given parameter for all passed objects.

fRetMinVal Returns the lowest value of the parameter for all objects.

fRetMaxVal Returns the highest value of the parameter for all objects.

fRetStdDeviation Returns the standard deviation of the parameter for all objects.

fRetTotal Returns the sum of the values for all objects.

Example ' Get the parameter summary and the accumulated summary data of

' the first filter for total area
MM.MorphGetParmSummary 0, 0, count, average, min, max, stddev,
 total

Dim count As Long
Dim average As Single, min As Single, max As Single
Dim stddev As Single, total As Single

MM.PrintMsg "The count is " + Str(count)
MM.PrintMsg "The average is " + Str(average)
MM.PrintMsg "The min is " + Str(min)
MM.PrintMsg "The max is " + Str(max)
MM.PrintMsg "The standard deviation is " + Str(stddev)
MM.PrintMsg "The total is " + Str(total)

MM.MorphGetParmAccumSummary 0, 0, count, average, min, max,
 stddev, total

Continued on next page

MetaMorph Visual Basic Reference Guide Page 123

8.5 Measuring All Objects in an Image, continued

MorphGetParmAccumSummary
(continued)

 MM.PrintMsg "The accumulated count is " + Str(count)

MM.PrintMsg "The accumulated average is " + Str(average)
MM.PrintMsg "The accumulated min is " + Str(min)
MM.PrintMsg "The accumulated max is " + Str(max)
MM.PrintMsg "The accumulated standard deviation is "
 + Str(stddev)
MM.PrintMsg "The accumulated total is " + Str(total)

See also: MorphFindParmIndex (Section 8.3), MorphGetParmSummary, MorphSetFilter

(Section 8.4)

MorphGetParmSummary

Description Obtains the statistics for all objects that passed a specified classifier filter for a

selected parameter.

Syntax MorphGetParmSummary(nClassifierNumber As Integer, nParmNumber As

Integer, lRetCount As Long, fRetAverage As Single, fRetMinVal As Single,
fRetMaxVal As Single, fRetStdDeviation As Single, fRetTotal As Single) As Long

Parameters nClassifierNumber Specifies the classifier number (0 – 7). This number is one that

you will have assigned with the MorphSetFilter function.

nParmNumber Specifies the parameter number of the classifier filter. This number
can be obtained with the MorphFindParmIndex function.

Return values lRetCount Returns the total number of objects which passed the classifier.

fRetAverage Returns the average value of the given parameter for all passed objects.

fRetMinVal Returns the lowest value of the parameter for all objects.

fRetMaxVal Returns the highest value of the parameter for all objects.

fRetStdDeviation Returns the standard deviation of the parameter for all objects.

fRetTotal Returns the sum of the values for all objects.

Continued on next page

Page 124 Visual Basic Reference Guide MetaMorph

8.5 Measuring All Objects in an Image, continued

MorphGetParmSummary
(continued)

Example ' Get the parameter summary and the accumulated summary data of

' the first filter for total area
MM.MorphGetParmSummary 0, 0, count, average, min, max, stddev,
 total

Dim count As Long
Dim average As Single, min As Single, max As Single
Dim stddev As Single, total As Single

MM.PrintMsg "The count is " + Str(count)
MM.PrintMsg "The average is " + Str(average)
MM.PrintMsg "The min is " + Str(min)
MM.PrintMsg "The max is " + Str(max)
MM.PrintMsg "The standard deviation is " + Str(stddev)
MM.PrintMsg "The total is " + Str(total)

MM.MorphGetParmAccumSummary 0, 0, count, average, min, max,
 stddev, total

MM.PrintMsg "The accumulated count is " + Str(count)
MM.PrintMsg "The accumulated average is " + Str(average)
MM.PrintMsg "The accumulated min is " + Str(min)
MM.PrintMsg "The accumulated max is " + Str(max)
MM.PrintMsg "The accumulated standard deviation is "
 + Str(stddev)
MM.PrintMsg "The accumulated total is " + Str(total)

See also: MorphFindParmIndex (Section 8.3), MorphGetParmAccumSummary,

MorphSetFilter (Section 8.4)

MorphMeasureObjects

Description Measures the hGrayImage image that was last specified by

MorphSetupMeasurements.

Syntax MorphMeasureObjects(bMeasureAll As Boolean) As Long

Parameters bMeasureAll Determines whether object measurements will be handled on a single

basis only or as a whole. If you set bMeasureAll to TRUE, all of the objects in the
image will be measured and their data made available to the various summary data
functions, as well as to the object data functions. If you set this variable to FALSE,
data will be passed only to the object data functions.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 125

8.5 Measuring All Objects in an Image, continued

MorphMeasureObjects
(continued)

Example ' Create a binary mask of the current image and then measure

' the image

Dim im As Long

' Put a threshold on the current image
MM.GetCurrentImage im
MM.SetThresholdState im, 1
MM.SetThresholdRange im, 50, 150

' Create the binarized image
Dim bin g As Lon
MM.CreateImage 12, 512, 1, "binary image", bin 5
MM.BinarizeImage im, bin

' Measure
MM.MorphSetupMeasurements im, bin, 1#
MM.MorphMeasureObjects TRUE

See also: MorphSetupMeasurements (Section 8.3)

MorphRecalc

Description Recomputes the statistical summary data for the current list of objects to be measured.

Syntax MorphRecalc() As Long

Remarks If any objects have been deleted (using MorphDeleteObject), those objects will be

eliminated from the measurement of summary data.

Example ' Delete object 4 from the morph summary data. This code

' assumes measurements have already been performed.
MM.MorphDeleteObject 4
MM.MorphRecalc

See also: MorphDeleteObject

Page 126 Visual Basic Reference Guide MetaMorph

8.6 Measuring Single Objects

Introduction Data for individual objects are measured for all objects in an image simultaneously,

but can be obtained and used on an object-by-object basis. This section describes the
functions that you can use to obtain measurement data for an individual object. (For a
discussion of group object measurement functions, see Section 8.5.) One
programming example is given for all of the single object data “Get” functions (see
Figure 8.1 on page 132).

MorphGetCentroid

Description Obtains the coordinates of the centroid (point that represents the center of mass) of a

specified object. The centroid will be given in fractional pixel coordinates.

Syntax MorphGetCentroid(nObjectID As Integer, fRetX As Single, fRetY As Single) As

Long

Remarks This function differs from MorphGetCentroidPixel in its use of fractional

coordinates. MorphGetCentroidPixel expresses coordinates as integer values by
locating the pixel nearest to the “fractional” centroid.

Parameters nObjectID Specifies the number of the object. Objects are numbered from 0 to

(n – 1), where n is the total number of objects.

Return values fRetX Returns the X-coordinate of the object centroid.

fRetY Returns the Y-coordinate of the object centroid.

See also: MorphGetCentroidPixel

MorphGetCentroidPixel

Description Obtains the coordinates of the pixel nearest to the centroid (the point that represents

the center of mass) of a specified object.

Syntax MorphGetCentroidPixel(nObjectID As Integer, nRetX As Integer, nRetY As Integer)

As Long

Remarks This function differs from MorphGetCentroid in that it expresses coordinates as

integer values by locating the pixel nearest to the “fractional” centroid.
MorphGetCentroid expresses the exact location of the centroid using fractional
coordinates.

Parameters nObjectID Specifies the number of the object. Objects are numbered from 0 to

(n – 1), where n is the total number of objects.

Continued on next page

MetaMorph Visual Basic Reference Guide Page 127

8.6 Measuring Single Objects, continued

MorphGetCentroidPixel
(continued)

Return values fRetX Returns the X-coordinate of the pixel nearest to the object centroid.

fRetY Returns the Y-coordinate of the pixel nearest to the object centroid.

See also: MorphGetCentroid

MorphGetClassifiersPassed

Description Obtains the number of classifier filters that a specified object has passed.

Syntax MorphGetClassifiersPassed(nObjectID As Integer, nRetClassifiersPassed As

Integer) As Long

Parameters nObjectID Specifies the number of the object. Objects are numbered from 0 to

(n – 1), where n is the total number of objects.

Return values nRetClassifiersPassed Returns the number of classifier filters that the object has

passed.

Example ' Find out how many classifiers object 9 passed

Dim n As Integer
MM.MorphGetClassifiersPassed 9, n

MorphGetClosestObject

Description Obtains the number of the object closest to a specified set of X and Y coordinates.

Syntax MorphGetClosestObject(nX As Integer, nY As Integer, nRetObjectID As Integer) As

Long

Parameters nX Specifies the X-coordinate.

nY Specifies the Y-coordinate.

Return values nRetObjectID Returns the object number of the object closest to the specified

coordinates.

Example ' Get the object number of the object nearest to coordinate

' 100, 100
Dim obj As Integer
MM.MorphGetClosestObject 100, 100, obj

Continued on next page

Page 128 Visual Basic Reference Guide MetaMorph

8.6 Measuring Single Objects, continued

MorphGetInternalPoint

Description Obtains the set of coordinates of some pixel within a specified object.

Syntax MorphGetInternalPoint(nObjectID As Integer, nRetX As Integer, nRetY As Integer)

As Long

Parameters nObjectID Specifies the number of the object. Objects are numbered from 0 to

(n – 1), where n is the total number of objects.

Return values nRetX Returns the X-coordinate of a randomly selected pixel in the object.

nRetY Returns the Y-coordinate of the same randomly selected pixel.

MorphGetMeasurements – for Visual Basic 6 & earlier
MorphGetMeasurementsEx2 – for Visual Basic .NET (2002 – 2008)

Description Fills a defined array with all measurement data for a specified object.

Syntax MorphGetMeasurements(nObjectID As Integer, aMeasurements() As Single) As

Long
MorphGetMeasurementsEx2(nObjectID As Integer, aMeasurements() As Single)
As Long

Parameters nObjectID Specifies the number of the object. Objects are numbered from 0 to

(n – 1), where n is the total number of objects.

Return values aMeasurements() Defines an array into which the object’s measurement data will be

read. The array should have at least the number of elements returned by
MorphGetNumberOfParms.

Example ' Get all the measurements for object number 12. This code

' assumes measurements have already been made.
Dim n As Integer
MM.MorphGetNumberOfParms nParms
Dim measurements nParms) As Single (
MM.MorphGetMeasurements 12, measurements

See also: MorphGetNumberOfParms (Section 8.3), MorphMeasureObjects (Section 8.5)

Continued on next page

MetaMorph Visual Basic Reference Guide Page 129

8.6 Measuring Single Objects, continued

MorphGetNumberOfRuns

Description Obtains the number of horizontal rows that compose a specified object.

Syntax MorphGetNumberOfRuns(nObjectID As Integer, nRetNumberOfRuns As Integer)

As Long

Parameters nObjectID Specifies the number of the object. Objects are numbered from 0 to

(n – 1), where n is the total number of objects.

Return values nRetNumberOfRuns Returns the number of horizontal rows in the object.

MorphGetNumberOfVertices

Description Obtains the number of vertices that make up the edgelist of a specified object.

Syntax MorphGetNumberOfVertices(nObjectID As Integer, nRetNumVertices As Integer)

As Long

Parameters nObjectID Specifies the number of the object. Objects are numbered from 0 to

(n – 1), where n is the total number of objects.

Return values nRetNumVertices Returns the number of vertices in the object’s edgelist.

See also: MorphGetVertexList

MorphGetObjectBoundingRect

Description Obtains the coordinates of the upper left and lower right corners of a specified

object’s bounding rectangle.

Syntax MorphGetObjectBoundingRect(nObjectID As Integer, nRetX1 As Integer, nRetY1

As Integer, nRetX2 As Integer, nRetY2 As Integer) As Long

Remarks A bounding rectangle is a device used by MetaMorph to work with irregularly shaped

objects. This contrivance is created by placing an imaginary rectangle over the
object’s outline. The sides of the rectangle will be perfectly horizontal and vertical,
and the smallest rectangle possible will be used. The MorphGetObjectBounding-
Rect function provides the coordinates of the starting point (upper left corner) and
ending point (lower right corner).

Continued on next page

Page 130 Visual Basic Reference Guide MetaMorph

8.6 Measuring Single Objects, continued

MorphGetObjectBoundingRect
(continued)

Parameters nObjectID Specifies the number of the object. Objects are numbered from 0 to

(n – 1), where n is the total number of objects.

Return values nRetX1 Returns the X-coordinate of the upper left corner of the bounding rectangle.

nRetY1 Returns the Y-coordinate of the upper left corner of the bounding rectangle.

nRetX2 Returns the X-coordinate of the lower right corner of the bounding rectangle.

nRetY2 Returns the Y-coordinate of the lower right corner of the bounding rectangle.

See also: MorphGetVertexList

MorphGetParmMeasurement

Description Obtains the measured value of a selected parameter for a specified object.

Syntax MorphGetParmMeasurement(nObjectID As Integer, nParmNumber As Integer,

fRetMeasurement As Single) As Long

Parameters nObjectID Specifies the number of the object. Objects are numbered from 0 to

(n – 1), where n is the total number of objects.

nParmNumber Specifies the parameter number. This number can be obtained with
the MorphFindParmIndex function.

Example ' Find the width of object 5. This code assumes that

' measurements have already been made.
Dim n As Integer
Dim nWidth As Single
MM.MorphFindParmIndex "Width", n
MM.MorphGetParmMeasurement 5, n, nWidth
MM.PrintMsg "The width of object 5 is " + Str(nWidth)

Return values fRetMeasurement Returns the measured value of the selected parameter.

See also: MorphFindParmIndex (Section 8.3)

Continued on next page

MetaMorph Visual Basic Reference Guide Page 131

8.6 Measuring Single Objects, continued

MorphGetPixelArea

Description Obtains the number of pixels in a specified object.

Syntax MorphGetPixelArea(nObjectID As Integer, lRetNumberOfPixels As Long) As Long

Parameters nObjectID Specifies the number of the object. Objects are numbered from 0 to

(n – 1), where n is the total number of objects.

Return values lRetNumberOfPixels Returns the number of pixels in the object.

MorphGetVertexList – for Visual Basic 6 & earlier
MorphGetVertexListEx2 – for Visual Basic .NET (2002 – 2008)

Description Obtains the X and Y coordinates of all vertices in the edgelist of a specified object.

Syntax MorphGetVertexList(nObjectID As Integer, aX() As Integer, aY() As Integer) As

Long
MorphGetVertexListEx2(nObjectID As Integer, aX() As Integer, aY() As Integer)
As Long

Remarks returns the coordinates of the vertices making up the edge list of the given object. The

number of elements in the arrays aX and aY should at least the number of vertices in
the object. use MorphGetNumberOfVertices to obtain this number.

Parameters nObjectID Specifies the number of the object. Objects are numbered from 0 to

(n – 1), where n is the total number of objects.

aX() Defines a buffer into which the X-coordinates of the vertices will be read.

aY() Defines a buffer into which the Y-coordinates of the vertices will be read.

Return values aX() The X-coordinates of the vertices will be read into this predefined buffer. (See

Parameters.)

aY() The Y-coordinates of the vertices will be read into this predefined buffer. (See
Parameters.)

See also: MorphGetNumberOfVertices

Continued on next page

Page 132 Visual Basic Reference Guide MetaMorph

8.6 Measuring Single Objects, continued

Figure 8.1 Single Object Data “Get” Function Programming Example

' For all the measured objects, print out some information
' obtained during measurement about each one. This code
' assumes object measurements were previously performed.

Dim nObjects As Integer
MM.MorphGetNumberOfObjects nObjects

Dim i As Integer

For i = 0 To nObjects - 1
 MM.PrintMsg "Object " + Str(i) + " information:"

 Dim area As Long
 MM.MorphGetPixelArea i, area
 MM.PrintMsg " Pixel area is " + Str(area)

 Dim x As Single, y As Single
 MM.MorphGetCentroid i, x, y
 MM.PrintMsg " Centroid is at " + Str(x) + ", " + Str(y)

 Dim nx ny Integer As Integer, As
 MM.MorphGetCentroidPixel i, nx, ny
 MM.PrintMsg " Centroid pixel is at " + Str(nx) + ", "
 + Str(y)

 MM.MorphGetInternalPoint i, nx, ny
 MM.PrintMsg " The coordinates of a point inside the object
 are " + Str(nx) + ", " + Str(ny)

 Dim n As Integer
 MM.MorphGetNumberOfVertices i, n
 MM.PrintMsg " The object has " + Str(n) + " vertices"

 Dim ax(n) As Integer, ay(n) As Integer
 MM.MorphGetVertexList i, ax, ay

 Dim j As Integer
 For j = 0 To n
 MM.PrintMsg " Vertex " + Str(j) + " is " + Str(ax(j))
 + ", " + Str(ay(j))
 Next j

Continued on next page

MetaMorph Visual Basic Reference Guide Page 133

8.6 Measuring Single Objects, continued

 Single Object Data “Get” Function Programming Example
(continued)

 MM.MorphGetNumberOfRuns i, n
 MM.PrintMsg " There are " + Str(n) + " runs in the object"

 Dim x1 As Integer, y1 As Integer, x2 As Integer,
 y2 As Integer
 MM.MorphGetObjectBoundingRect i, x1, y1, x2, y2
 MM.PrintMsg " The bounding rectangle coordinates are "
 + Str(x1) + ", " + Str(y1) + " and " + Str(x2) + ", "
 + Str(y2)
Next i

Page 134

Visual Basic Reference Guide MetaMorph

Index

—A—
Annotations

Creating and assigning 54
Reading 51

Area, measuring thresholded 106
Arrays 14
ASCII control codes 21
AutoEnhance 59
Autoscaling

Current setting, reading 63
Enabling and disabling 65
Range maximum

Configuring 66
Reading 64

Range minimum
Configuring 67

Reading 65

—B—
BinarizeImage 81
Bit-depth 51
Bounding rectangle 126
Brightness

Autoenhancing 60
Configuring 62
Making changes permanent 60
Reading the current setting 61
Reverting to the previous setting 62

—C—
Centroids, obtaining coordinates 123
Class Modules 9
Classifiers

Failed objects, drawing 111
Measurement data, reading 119, 120
Number of filters passed, determining for an
object 124
Settings

Configuring 117
Reading 116

CloneImage 37
CloseImage 38
Command Line text box 5
Contrast

Autoenhancing 60
Configuring 63
Making changes permanent 60
Reading the current setting 61
Reverting to the previous setting 62

Coordinates

Bounding rectangle, determining for 126
Internal point of an object 125
Nearest object, finding 124
Vertices in an object, reading 128

CopyImage 38
CopyImagePlane 39
Copying images 37
CreateImage 39
CreateRectRegion 93

—D—
DestroyRegion 94
DIGetFirst 23
DIGetIOStatus 23
DIGetLineCount 24
DIGetLineState 25
DIGetName 25
DIGetNext 26
Digital I/O

High vs. Low state, reading 25
Input vs. output status of a line, reading 23
Number of lines, reading 24
Receiving signals from a device 27
Sending signals to a device 26

DoCommand 6, 8

—E—
Edgelists

Coordinates for a region, reading 101
Vertices

Coordinates, reading for an object 128
Number of, reading 126

Exclusive thresholding 78, 79

—F—
FixImage 60
ForceCloseImage 40
Functions required by MetaMorph 7

—G—
GetActivePlane 51
GetActiveRegion 95
GetAutoScale 64
GetBrightness 61
GetContrast 61
GetCurrentImage 44
GetDepth 51
GetFunctionHandle 30
GetHeight 51
GetImage 44

Page 132

Visual Basic Reference Guide MetaMorph

GetImageAnnotation 52
GetImageName 52
GetImageWindowPosition 47
GetImageWindowSize 47
GetLut 69
GetLutModel 70
GetMaxScale 65
GetMinScale 66
GetNumberOfImages 45
GetNumberOfPlanes 53
GetNumberOfRegions 96
GetRegion 96
GetRegionArea 99
GetRegionAverageValue 105
GetRegionDistance 99
GetRegionMaximumValue 106
GetRegionMinimumValue 105
GetRegionPosition 100
GetRegionSize 100
GetRegionStdDeviation 106
GetRegionThresholdArea 107
GetThresholdRange 77
GetThresholdState 78
GetWidth 53
GetZoom 53
gParentWnd variable 7
gUserID variable 7

—H—
Handles

Obtaining
Digital I/O MetaDevice 23, 26
Function 30
Image 44
Region of interest 95, 96

Testing validity
Image 46
Region 97

Height, image 51

—I—
Image windows

Maximizing 48
Minimizing 49
Position

Configuring 49
Reading 47

Size
Configuring 50
Reading 47

Images
Binarizing 81
Closing 38, 40
Copying 37
Copying a plane 39

Handles, finding 44
Height, reading 51
Loading 41
Name, reading 52
New images, creating 39
Number of loaded images, finding 45
Overwriting 38
Renaming 56
Saving 41
Selecting for measurement 115
Setting the timestamp 56
Updating display 59
Width, reading 53

Inclusive thresholding 78, 79
Intensity

Average 105
Maximum 106
Measuring 107
Minimum 105
Reading

From a column of pixels 82, 83
From a row of pixels 84, 85
From a single pixel 84

Standard deviation 106
Writing values

To a column of pixels 86, 87
To a row of pixels 89, 90
To a single pixel 88

IsValidImage 46
IsValidRegion 97

—J—
Journals, running 33

—K—
Keep Program in Memory After Execution check box
6

—L—
Labeling an image 91
LoadImage 41
Look-up tables

Assigning a LUT model 73
Current LUT model in use, determining 70
Reading a table’s elements 69
Writing to a table’s elements 72

—M—
Mask images 115
MaximizeImageWindow 48
Measurement

Centroids 123
Data

MetaMorph Visual Basic Reference Guide Page 133

Filling an array 125
Reading 119, 120

Measuring objects in an image 121
Number of pixels in an object, measuring 128
Parameter data, reading for an object 127
Recalculating 122
Vertices in an object, reading 128

Measurement images 115
MeasureRegion 107
Message windows

Configuring size and position 34
Displaying 30

MetaDevices
Obtaining a handle 23
Obtaining a name from a handle 25

MinimizeImageWindow 49
MM variable 7
MorphDeleteObject 118
MorphFindParmIndex 112
MorphGetCentroid 123
MorphGetCentroidPixel 123
MorphGetClassifiersPassed 124
MorphGetClosestObject 124
MorphGetFilter 116
MorphGetInternalPoint 125
MorphGetMeasurements 125
MorphGetNumberOfObjects 118
MorphGetNumberOfParms 113
MorphGetNumberOfRuns 126
MorphGetNumberOfVertices 126
MorphGetObjectBoundingRect 126
MorphGetParmAccumSummary 119
MorphGetParmDescription 113
MorphGetParmMeasurement 127
MorphGetParmName 114
MorphGetParmSummary 120
MorphGetPixelArea 128
MorphGetVertexList 128
MorphMeasureObjects 121
MorphRecalc 122
MorphSetDrawFailedObjectsFlag 111
MorphSetFillHoleFlag 111
MorphSetFilter 117
MorphSetupMeasurements 115

—N—
New images, creating 39

—O—
Object linking and embedding 7
Objects

Measuring 121
Nearest object, finding 124
Number last measured, finding 118
Parameter data, reading 127
Pixels in an object, measuring 128

Remeasuring 122
Removing from a measurement list 118
Rows in an object, measuring 126
Vertices, determining number of 126

OLE 7

—P—
Palettes, configuring number of entries 74
Parameters

Description, obtaining 113
Name, obtaining 114
Number of measurable parameters, determining
113
Parameter number, determining from a
parameter’s name 112

Perimeter, determining for a region 99
Planes

Active plane, setting 55
Copying 39
Number of planes in stack, reading 53
Plane number, reading 51

Preferences
Failed objects, drawing 111
Holes, filling 111

PrintMsg 30
Program Name drop-down list 5
Public variants 9

—R—
ReadColumn 82
ReadColumnEx 83
ReadPixel 84
ReadRow 84
ReadRowEx 85
RegionGetEdgePixelCoordinates 101
RegionGetNumEdgePixels 101
Regions

Active region, setting 98
Area, determining 99
Creating 93
Handles, finding 95, 96
Intensity, measuring 107
Number of regions, determining 96
Numbers, switching 104
Perimeter, determining

Calibrated units 99
Pixel units 101

Position
Configuring 103
Reading 100

Removing 94
Size

Configuring 103
Reading 100

Thresholded area, measuring 107
Remove command button 6

Page 134

Visual Basic Reference Guide MetaMorph

ResetContrast 62
Run User Program

Dialog box 5
Options 5

RunFunction 31
RunFunctionEx 32
RunJournal 33
Running a function 31
Running a journal 33
RUNUSER drop-in 5

—S—
SaveImage 41
SendSerialData 18
Serial communication

ASCII control codes 21
Receiving a data stream from a device 19
Sending a data stream to a device 18
Syntax rules 20

Set 9
SetActivePlane 55
SetActiveRegion 98
SetAutoScale 66
SetBrightness 62
SetContrast 63
SetDigitalIO 26
SetDisplayImagesWhenCreated 42
SetFunctionVariable 33
SetImageAnnotation 55
SetImageName 56
SetImageTimestamp 56
SetImageWindowPosition 49
SetImageWindowSize 50
SetLut 72
SetLutModel 73
SetMaxScale 67
SetMinScale 68
SetNumPaletteEntries 74
SetPrintMsgWindowPositionAndSize 34
SetRegionPosition 103
SetRegionSize 103
SetThresholdRange 79
SetThresholdState 79
SetZoom 57
ShowImage 43
Shutdown 6, 8
Standard area 115
Startup 6, 8
Summary data, recalculating 122
SwapRegionNumbers 104

—T—
Text, writing on an image 91
Thresholding

Area, measuring thresholded 107
Holes, filling 111
Range

Configuring 79
Reading 77

State
Configuring 79
Reading 78

—U—
UpdateDisplay 59
User programs

Compiling 12
Creating

With Visual Basic 4.0 10
With Visual Basic 5.0 11

Overview 7
Registering and unregistering 6

UserMethods 9

—V—
Variables required by MetaMorph 7
Variables, setting values for 33
Vertices

Determining number in an object 126
Reading coordinates from an object 128

—W—
WaitForDigitalIO 27
WaitForSerialData 19
Width, image 53
WriteColumn 86
WriteColumnEx 87
WritePixel 88
WriteRow 89
WriteRowEx 90
WriteText 91

—Z—
Zoom factor

Configuring 57
Reading 53

	Cover and Copyright
	Table of Contents--Visual Basic Reference Guide
	Contents
	Figures
	Tables

	Chapter 1--Introduction
	Chapter 1 Introduction
	1.1 Overview
	1.2 Conventions Used in This Manual
	1.3 The Run User Program Command
	1.4 Visual Basic and User Programs
	1.5 Creating a User Program
	1.6 Data Types and Arrays

	Chapter 2--Performing Serial and Digital I-O Communication
	Chapter 2 Performing Serial and Digital I/O Communication
	2.1 Overview
	2.2 Performing Serial Data Transmission
	2.3 Communicating with a Digital I/O Device

	Chapter 3--Executing Commands and Journals
	Chapter 3 Executing Commands and Journals
	3.1 Overview
	3.2 Executing Commands and Journals

	Chapter 4--Reading and Manipulating Images and Image Windows
	Chapter 4 Reading and Manipulating Images and Image Windows
	4.1 Overview
	4.2 Loading, Creating, Copying, and Closing Images
	4.3 Finding Loaded Images
	4.4 Manipulating Image Windows
	4.5 Reading and Using Image Properties

	Chapter 5--Adjusting Image Display
	Chapter 5 Adjusting Image Display
	5.1 Overview
	5.2 Updating the Image After Changing the Display
	5.3 Adjusting Brightness and Contrast
	5.4 Autoscaling 16-Bit Images
	5.5 Working with Look-up Tables and Palettes

	Chapter 6--Reading and Using Image Pixel Data
	Chapter 6 Reading and Using Image Pixel Data
	6.1 Overview
	6.2 Applying Thresholding
	6.3 Reading and Manipulating Image Data

	Chapter 7--Working with Regions
	Chapter 7 Working with Regions of Interest
	7.1 Overview
	7.2 Creating and Removing Regions
	7.3 Finding Regions
	7.4 Reading and Manipulating Region Properties
	7.5 Reading Image Data from Regions

	Chapter 8--Performing Morphometry
	Chapter 8 Performing Morphometry
	8.1 Overview
	8.2 Configuring Measurement Preferences
	8.3 Configuring Object Measurements
	8.4 Configuring Classifier Filters
	8.5 Measuring All Objects in an Image
	8.6 Measuring Single Objects

	Index--Visual Basic Reference Guide
	Index

