

IN Carta software

Protocol design (Mono-nucleated Cells application)

Set up protocol

1.Select the *Analyze* tab.

- 2. In the Applications () tab, select Mono-nucleated Cells.
- 3. In the **Protocols** (2) tab, click the protocol you would like to run and select the **Modify** (3) tab. Alternatively, click **New** to design a new protocol.
- 4. Check the **Target Type 6** boxes to activate the correct targets.
- 5. For each Target Type:
 - a. Enter a unique **Display Name** (6), if desired.
 - b. For organelles, specify the **Compartment** *i* in which they should be identified.
 - c. Select Wavelength (8) and a Mask Display (9) color.
 - d. Select **Segmentation** (10) method. Table at right provides details on the various methods.
 - e. Click the *Measures* **1** button and select/deselect measurements for each *Target Type* as needed.
 - See "Using measurements menu" for more information.
- 6. For data sets with multiple z slices, it is possible to define a *Run mode* 2. It can be *Multiple Slices, Current Slice* or *Best Focus Z*. In order to specify a custom range of z slices, select *Multiple Slices* and click *Controls* button 3. Select *Best Focus Z* to allow IN Carta automatically determine the slice to be analyzed via image contrast anaysis, for a selected channel. Click *Controls* button 3 to specify a channel used for select best focus z-slice.
- 7. Only one time-point can be analyzed in *Mono-nucleated Cells* application. The first point is selected by default, and another time-point selected for analysis in specimen navigation panel. Switch to *Time-lapse Analysis* application when analysis of multiple time-points is required.
- Select the *Import Protocols* (4) tab to load previously created analysis protocols or protocols shared by other users.

Optimize segmentation parameters

- 1. Use the *Analysis Settings Panel* to edit available parameters for each *Target Type*.
- Note: See the table on the next page or click the *Information* () icon for more details on parameters.
- 2. Click **Apply** to see preliminary segmentation results overlaid on the images.
- 3. Check segmentation results for each target using any or all of the strategies below:
 - Use the *Mask* is tool to toggle mask display on/off and to access the *Target Mask Properties* menu.
 - Measure object length and area to refine size and area estimates using the **Sizing** tool.
 - Apply an Area or Intensity Filter as needed.
- Select the **Results Review** tab to display plots of the measured data to refine estimates for algorithm parameters.
- 4. Update *Analysis Settings* as necessary and click *Apply*. Repeat steps 2 and 3 until segmentation results are satisfactory.
- 5. Select another well and repeat steps 2 and 3 to verify that *Analysis Settings* are appropriate across the plate.
- 6. Click Save 🔞

Target type	Segmentation method	Description		
Nuclei	Fast	 Faster than Robust method, but not as accurate Use for total intensity assays or when morphology information is not critical 		
	Robust	Slower than Fast method, but will provide more accurate nuclear segmentation results		
Cell	Fast	 Faster than Robust method, but not as accurate Use for well-separated, reasonably large cells 		
	Collar	 Nuclear dilation method Use when there is no cellular staining, when identifying positive/negative staining, or when precise cell segmentation is not required 		
	Robust	 Watershed algorithm that very accurately defines cell boundary Use when morphology or identification of objects within the cell boundary is important 		
	Soma	 Use with Neurites segmentation Modified Robust Cell segmentation algorithm to segment soma 		
Organelle	Fast puncta	 Multi-scale top hat algorithm Good at identifying puncta of varying size 		
	Robust puncta	Good at identifying puncta of varying intensity		
	Networks	 Segments network like organelles within the cell (e.g., endoplasmic reticulum, mitochondria, golgi) 		
	Membrane	 Creates an artificial boundary within the cell. Use to segment a membrane compartment or to create a new compartment within the cell, for example mitochondria 		
	Fibers	Detects filamentous structures including individual and collapsed fibers		
	Neurites	 Segments neurite outgrowth and performs its tracing 		

Using measurements menu

- Measures are divided into Count, Spatial, Intensity, Position, Coordination, Texture and Colocalization categories.
- Each category has some default measurements selected and other available measure can be selected as needed.
- A channel selection is located in the *Intensity, Texture* and *Colocalization* categories. It allows to perform intensityrelevant measurements on wavelengths other than the one used for segmentation. For example, segment nuclei in the DAPI channel and measure intensity within a nuclear mask in FITC channel.

Run Protocol

- 1. Click Run Protocol 🙃
- 2. Click and drag or click Select All to select wells for analysis. Note: Press Ctrl during selection to select non-adjacent wells.
- 3. Click **Run**.

Note: See Using batch analysis to run more than one protocol at a time.

Using batch analysis

- 1. Click Batch
- 2. Select New Batch.
- 3. Enter a name for the **Batch Container** and click **Ok**.
- 4. With the Batch Container selected in the Batch Containers panel, select multiple data sets from the Acquisition Experiments panel
 - and select one or multiple analysis protocol. Click Add Selected.
- 5. Click **Submit for Processing**. Results are saved to each image stack location.
- 6. Click the *Monitoring* icon to see the status of the batch analysis.

Parameter	Nuclei	Cells	Organelles	Explanation	Tips
Area filter	\checkmark	\checkmark	\checkmark	A post segmentation step to remove large or small objects from final data	 Use to remove objects with an area outside the range selected (i.e., small segmented background noise or large artifacts)
Background suppression			\checkmark	Advanced parameter for neurite segmentation to correct for low contrast	 Default value is a good starting point and should be changed only when changing sensitivity and width parameters don't improve segmentation Higher values reduce noise in the segmentation mask
Cell area		\checkmark		Average cell area (µm²)	 Use size tools to establish appropriate value 2 × the nuclear area is a good estimate for monolayer cells After initial segmentation use <i>Results Review</i> plot to refine
Collar radius		\checkmark		Distance (µm) to be dilated from the edges of the nuclear mask	Use to generate an artificial cell boundary when there is not a sufficient cell marker
Connected component segmentation			\checkmark	Advanced parameter for neurite segmantation, which triggers the use of an algorithm to segment broken neurites	Turn on by default and turned off only when changing senstivity and width parameters dont improve segmentation
Diameter	\checkmark			Typical target diameter (µm)	 Use size tools to establish appropriate value. After initial segmentation, use <i>Results Review</i> plot to refine
Enhance Image			\checkmark	Advanced parameter for neurite target to improve image contrast prior to segmentation	 Turned off by default and should be turned on only when changing sensitivity and width parameters don't improve segmentation
Intensity filter	\checkmark	\checkmark	\checkmark	A post segmentation step to remove bright or dim objects from final data	Use to exclude objects with a mean intensity outside the selected range
Min. length			~	Approximate length (µm²) of the shortest fiber to be segmented	 Larger values will detect longer continuous objects while smaller values will detect small fragments or break up incorrectly joint objects This value is not a filter so the algorithm may still identify objects smaller than the specified length
Minimum target area	~			Approximate area (µm ²) of smallest nucleus (Used for optimization of other algorithm functions. This does not mean that smaller nuclei cannot be segmented)	 Use size tools to establish appropriate value Default value is a good starting point After initial segmentation, use <i>Results Review</i> plot to refine
Minimum/maximum target area or target diameter			\checkmark	Approximate area (μm²) or diameter (μm) of the smallest and largest organelles to be segmented	These values adjust the steps of the algorithm to favor objects of a specified size
Minimum/Maximum width			~	Approximate thickness (μm) of the smallest and largest fibers and neurites to be segmented	 To segment individual fibers, use very small min value since actin filament width is typically close to the resolution limit Increase Min/Max width for lower magnification images when segmenting individual fibers/neurites isn't possible
Noise removal	\checkmark	\checkmark	\checkmark	Noise removal filter to improve segmentation results for samples with few cells and/or low contrast	 Use if background is high, illumination is uneven, or if there is debris in the field-of-view (FOV)
Ratio		\checkmark		Controls the size of soma required for downstream neurite segmentation	 Similar values result in larger soma Decrease sensitivity first if soma is over-segmented. If soma mask still expands beyond cell borders then increase ratio value
Scales			~	Number of distinct sizes of objects to be identified	 Increasing the number of scales allows for detection of a larger range of organelle sizes When scales equal 1: Only the minimum area is considered 2: Both minimum and maximum values are used 3 or more: Values between minimum and maximum are used
Sensitivity	\checkmark	\checkmark	\checkmark	Determines whether pixels are assigned to objects or background based on intensity relative to local background	 Lower contrast images typically require higher sensitivity If object borders are not well defined, adjust sensitivity If too many small false positives are found in background, use the area filter to remove
Sensitivity threshold			\checkmark	Noise suppression filter	 Increase if too many organelles are identified with Sensitivity slider at lowest value Decrease if too few organelles are identified with Sensitivity slider at maximum value Increase or decrease by increments of 0.25
Thickness (membrane)			\checkmark	Distance (µm) to erode cell boundary to create membrane compartment	• After membrane is defined, it can be used as a compartment for subsequent organelles
Thickness (network)			\checkmark	Thickness (µm) of individual structures of the network	 Default value is a good starting point Increase to identify thicker structures, decrease to identify thinner structures
Tubeness			 ✓ 	Advanced parameter for neurite target to obtain continuous segmentation mask	 Default value is a good starting point and should be changed only when changing sensitivity and width parameters don't improve segmentation Higher values result in smoother segmentation masks

Cytiva and the Drop logo are trademarks of Global Life Sciences IP Holdco LLC or an affiliate. All other third-party trademarks are the property of their respective owners. Any use of this software is subject to the Cytiva Standard Software End-User License Agreement for Life Sciences Software Products. A copy of this Standard Software End-User License is available on request. # 2020 Cytiva All goods and services are soid subject to the terms and conditions of sale of the supplying company operating within the Cytiva business. A copy of these terms and conditions is available on request. For local office contact information, visit <u>cytiva associate for the most current information.</u> IN Carta Software is for research use only - not for diagnostic use. For local office contact information, visit <u>cytiva combinates</u>

