

Together through life sciences.

MetaXpress® Software: Transfluor Module

Transfluor Module Overview

- The Transfluor module can be used to analyze the number and intensity of Pits (small) and/or vesicles (larger and brighter) per image and per cell
- This module does not require a nuclear wavelength.
- A nuclear stain (e.g. DAPI, Hoechst, or DRAQ5)
 is required to determine the number of
 objects (Pits/ vesicles) per cell.

- Pits and Vesicles Image
- Select the image with pits and vesicles here

- Display result image
- Leave "Display result image" deselected (this is generally only used when journaling)

Algorithm

- This option is only available in MetaXpress software version 4.0 and higher and determines how quickly the analysis is performed.
- Fast algorithm can perform analysis up to twice as fast as Standard.
- Both algorithms produce similar but not identical results.

Pits and Vesicles

- Pits are smaller and dimmer
- Vesicles is typically an aggregate of multiple Pits
- Vesicles are larger in size and are typically brighter
- Pit detection is indicated in white, Vesicle detection is indicated in red

Pits

Vesicles

- Pits
- Deselect Vesicles and Nuclear stain

- Pits
- Using the region tools measure the appropriate min (minimum) and max (maximum) width of qualifying Pits.
- Much smaller Pits will be ignored
- Much larger Pits will be split

- Pits
- The intensity above local background is used for finding the Pits
- This value is a minimum and should be set slightly lower than the difference in intensity between a dim Pits and its local background. For FAST algorithm, set this value to about half (or less) of the difference in intensity between a dim cell and local background.
- Draw a line across a cell into the background and use Measure > Linescan to determine intensity values; or simply mouse over the pits and the background and view the intensity values

Only pits selected

Pits and vesicles selected

- Vesicles
- Repeat the same steps for vesicles
- If an object fulfills the vesicle settings (size and intensity) it will be classified as a vesicle

- Nuclear Stain (not required)
- Select tick mark
- Select the wavelength for the nuclei

- **Nuclear Stain**
- **Set the Approximate min width** and **Approximate max width** for the range of nuclei that you want to detect
- The width is the short axis of a nucleus (in um)
- The region tools can be used to measure widths
- Much smaller cells will be ignored
- Much larger cells will be split

Effects of varying width settings

Min width too small: splits nuclei

Min width too large: omits smaller nuclei

Max width too small: may shrink nuclear boundaries

Max width too large: may slightly enlarge nuclear boundaries

- **Nuclear Stain**
- The intensity above local background is used for finding the nuclei
- This value is a minimum and should be set slightly lower than the difference in intensity between a dim cell and its local background. For FAST algorithm, set this value to about half (or less) of the difference in intensity between a dim cell and local background.
- Draw a line across a cell into the background and use Measure > Linescan to determine intensity values; or simply mouse over the cell and the background and view the intensity values

- Nuclear Stain
- Deselect the Vesicles and vesicle measurements
- Select Test Run to view the cell segmentation
- Change settings if needed
- Reselect the pit and vesicle options and save the settings

Module Settings – General Settings

- Configure Summary Log select siteby-site measurements
- Configure Data Log select cell-by-cell measurements
- Save Settings save analysis parameters to database
- Load Settings load saved analysis parameters
- Set to Defaults restore default analysis parameters
- Test Run test all settings together and display cell-by-cell results for this site

- Pit Count
- ✓ Pit Count Per Cell
- → Pit Total Area
- → Pit Area Per Cell
- Pit Integrated Intensity
- Pit Average Intensity
- Vesicle Count
- Vesicle Count Per Cell
- Vesicle Total Area
- Vesicle Area Per Cell
- Vesicle Integrated Intensity
- Vesicle Average Intensity
- Nuclear Count
- Nuclear Total Area
- Nuclear Area Per Cell
- Nuclear Integrated Intensity
- Nuclear Average Intensity
- Texture Index
- Cellular Texture Index
- Gradient Index
- Cellular Gradient Index
- Laplacian Index
- Cellular Laplacian Index

- Pit Count: Total number of pits
- Pit Count Per Cell: Total number of pits divided by the total number of nucleus
- Pit Total Area: The total area of the pits found in the image (in um²)
- Pit Area Per Cell: The total area of pits for all cells divided by the total number of nucleus (in um²)
- Pit Integrated Intensity: The total pixel intensity of the pit area
- Pit Average Intensity: The total pixel intensity of the pit area divided by the total number of nucleus

- Pit Count
- → Pit Count Per Cell
- → Pit Total Area
- Pit Area Per Cell
- Pit Integrated Intensity
- Pit Average Intensity
- Vesicle Count
- Vesicle Count Per Cell
- Vesicle Total Area
- Vesicle Area Per Cell
- Vesicle Integrated Intensity
- Vesicle Average Intensity
- Nuclear Count
- Nuclear Total Area
- Nuclear Area Per Cell
- Nuclear Integrated Intensity
- Nuclear Average Intensity
- Texture Index
- Cellular Texture Index
- Gradient Index
- Cellular Gradient Index
- Laplacian Index
- Cellular Laplacian Index

- Vesicle Count: Total number of vesicle
- Vesicle Count Per Cell: Total number of vesicle divided by the total number of nucleus
- Vesicle Total Area: The total area of the vesicle found in the image (in um²)
- Vesicle Area Per Cell: The total area of vesicle for all cells divided by the total number of nucleus (in um²)
- Vesicle Integrated Intensity: The total pixel intensity of the vesicle area
- Vesicle Average Intensity: The total pixel intensity of the vesicle area divided by the total number of nucleus

- Pit Count
- → Pit Count Per Cell
- → Pit Total Area
- Pit Area Per Cell
- Pit Integrated Intensity
- Pit Average Intensity
- Vesicle Count
- Vesicle Count Per Cell
- Vesicle Total Area
- Vesicle Area Per Cell
- Vesicle Integrated Intensity
- Vesicle Average Intensity
- Nuclear Count
- Nuclear Total Area
- Nuclear Area Per Cell
- Nuclear Integrated Intensity
- Nuclear Average Intensity
- Texture Index
- Cellular Texture Index
- Gradient Index
- Cellular Gradient Index
- Laplacian Index
- Cellular Laplacian Index

- Nuclear Count: Total number of nuclei (cell count)
- Nuclear Total Area: The total area of the nucleus for all cells found in the image (in um²)
- Nuclear Area Per Cell: The average area of nucleus for all cells found in the image (in um²)
- Nuclear Integrated Intensity: The total pixel intensity of the nuclear stain over the nuclear area
- Nuclear Average Intensity: The total pixel intensity of the nuclear stain over the nuclear area, divided by the total number of cells

- Pit Count
- → Pit Count Per Cell
- → Pit Total Area
- Pit Area Per Cell
- Pit Integrated Intensity
- Pit Average Intensity
- Vesicle Count
- Vesicle Count Per Cell
- Vesicle Total Area
- Vesicle Area Per Cell
- Vesicle Integrated Intensity
- Vesicle Average Intensity
- Nuclear Count
- Nuclear Total Area
- Nuclear Area Per Cell
- Nuclear Integrated Intensity
- Nuclear Average Intensity
- Texture Index
- Cellular Texture Index
- Gradient Index
- Cellular Gradient Index
- Laplacian Index
- Cellular Laplacian Index

- Texture Index: Standard deviation of intensity values in the image.
- Cellular Texture Index: Cell-by-cell standard deviation of intensity values near the nuclei. (Requires use of nuclear stain).
- Gradient Index: A texture-dependent measurement that reflects the amount of local intensity contrast. Measures the difference between the maximum and minimum intensity within a local neighborhood.
- Cellular Gradient Index: Cell-by-cell Gradient Index measured near the nuclei. (Requires use of nuclear stain).
- Laplacian Index: Similar to the morphological gradient, however this morphological measurement reflects fluctuations in the gradient.
- Cellular Laplacian Index: Cell-by-cell Laplacian Index measured near the nuclei. (Requires use of nuclear stain).

- Cell: Assigned Label #
- Cell: Pit Count
- Cell: Pit Total Area
- Cell: Pit Integrated Intensity
- Cell: Pit Average Intensity
- ✓ Cell: Vesicle Count
- Cell: Vesicle Total Area
- Cell: Vesicle Integrated Intensity
- Cell: Vesicle Average Intensity
- Cell: Nuclear Total Area
- Cell: Nuclear Integrated Intensity
- Cell: Nuclear Average Intensity
- Cell: Texture Index
- Cell: Gradient Index
- Cell: Laplacian Index

Highlighted cells shows assigned pits to cell

- Cell: Assigned Label # Cell label number (1 through total cell number)
- Cell: Pit Count: Number of pits detected for a specific cell. (Note: a pit is assigned to its nearest nucleus)
- Cell: Pit Total Area: Area covered by all the pits assigned to a specific cell in um2
- Cell: Pit Integrated Intensity: The total pixel intensity of the pits assigned to a specific cell
- Cell: Pit Average Intensity: The total pixel intensity of the pits assigned to a specific cell divided by the number of pits assigned to a specific cell

- Cell: Assigned Label #
- Cell: Pit Count
- Cell: Pit Total Area
- Cell: Pit Integrated Intensity
- Cell: Pit Average Intensity
- Cell: Vesicle Count
- Cell: Vesicle Total Area
- Cell: Vesicle Integrated Intensity
- Cell: Vesicle Average Intensity
- Cell: Nuclear Total Area
- Cell: Nuclear Integrated Intensity
- Cell: Nuclear Average Intensity
- Cell: Texture Index
- Cell: Gradient Index
- Cell: Laplacian Index

Highlighted cells shows assigned pits to cell

- Cell: Vesicle Count: Number of Vesicles detected for a specific cell. (Note: a Vesicle is assigned to its nearest nucleus)
- Cell: Vesicle Total Area: Area covered by all the Vesicles assigned to a specific cell in um2
- Cell: Vesicle Integrated Intensity: The total pixel intensity of the Vesicles assigned to a specific cell
- Cell: Vesicle Average Intensity: The total pixel intensity of the Vesicles assigned to a specific cell divided by the number of Vesicles assigned to a specific cell

- Cell: Assigned Label #
- Cell: Pit Count
- Cell: Pit Total Area
- Cell: Pit Integrated Intensity
- Cell: Pit Average Intensity
- Cell: Vesicle Count
- Cell: Vesicle Total Area
- Cell: Vesicle Integrated Intensity
- Cell: Vesicle Average Intensity
- Cell: Nuclear Total Area
- Cell: Nuclear Integrated Intensity
- ✓ Cell: Nuclear Average Intensity
- Cell: Texture Index
- Cell: Gradient Index
- Cell: Laplacian Index

- Cell: Nuclear Total Area Total square microns of the nucleus
- Cell: Nuclear Integrated Intensity —
 Total pixel intensity of the nuclear stain in the nucleus
- Cell: Nuclear Average Intensity –
 Average pixel intensity of the nuclear stain in the nucleus

- Cell: Assigned Label #
- Cell: Pit Count
- Cell: Pit Total Area
- Cell: Pit Integrated Intensity
- Cell: Pit Average Intensity
- Cell: Vesicle Count
- Cell: Vesicle Total Area
- Cell: Vesicle Integrated Intensity
- Cell: Vesicle Average Intensity
- Cell: Nuclear Total Area
- Cell: Nuclear Integrated Intensity
- Cell: Nuclear Average Intensity
- Cell: Texture Index
- Cell: Gradient Index
- Cell: Laplacian Index

- Cell: Texture Index: Standard deviation of intensity values of a cell
- Cell: Gradient Index: A texturedependent measurement that reflects the amount of local intensity contrast. Measures the difference between the maximum and minimum intensity within a local neighborhood of a cell
- Cell: Laplacian Index: Similar to the morphological gradient, however this morphological measurement reflects fluctuations in the gradient of a cell

Together through life sciences.

www.moleculardevices.com