

Together through life sciences.

MetaXpress® Software: Cell Cycle Module

Cell Cycle Module Overview

- Cell-by-cell cell cycle classification into G0/G1, S phase, G2, early mitosis, late mitosis, and (optional) apoptosis using 1-3 wavelengths:
- DNA stain (required)
- Optional mitotic stain (such as phospho-histone H3)
- Optional apoptotic stain

Module Settings

Algorithm

- This option is only available in MetaXpress software version 4.0 and higher and determines how quickly the analysis is performed.
- Fast algorithm can perform analysis up to twice as fast as Standard.
- Both algorithms produce similar but not identical results.

1. Module Settings – result image

 Leave "Display result image" deselected (this is generally only used when journaling)

2. Module Settings – DNA content

 Select the wavelength for the DNA content (nuclear stain)

3. Module Settings – width settings

- Set the Approximate min width and Approximate max width for the range of nuclei that you want to detect
- The width is the short axis of a nucleus (in um).
- The region tools can be used to measure widths
- Much smaller cells will be ignored
- Much larger cells will be split

3. Module Settings – width settings

Effects of varying width settings

Min width too small: splits nuclei

Min width too large: omits smaller nuclei

Max width too small: may shrink nuclear boundaries

Max width too large: may slightly enlarge nuclear boundaries

4. Module Settings – intensity settings

- The intensity above local background is used for finding the nuclei
- This value is a minimum and should be set slightly lower than the difference in intensity between a dim cell and its local background. For FAST algorithm, set this value to about half (or less) of the difference in intensity between a dim cell and local background.
- Draw a line across a cell into the background and use Measure > Linescan to determine intensity values; or simply mouse over the cell and the background and view the intensity values

5. Module Settings – background subtraction

- The background intensity is subtracted from the probe intensities before measurements are performed and recorded.
- None: no background subtraction is performed
- Auto Constant: an average background value is calculated for each image and subtracted
- Constant: input a fixed background intensity to be subtracted

 Click on **Preview** to test settings and set the classification parameters

 An interactive graph is shown to adjust the cutoffs for classification.

- The **integrated intensity** of the nuclear stain is used to quantify DNA content (similar to flow cytometry cell cycle analysis).
- Cells in G0 or G1 or late mitosis have 2N DNA content.
- Cells in G2 or early mitosis have 4N DNA content.
- Cells in S phase have DNA content in between 2N and 4N.

- Guidelines on setting cutoffs:
- Drag the sliders to set them, or type in numbers (useful if the sliders are out of scale)
- Usually the first large peak is the 2N peak, and the 4N peak will be smaller and approximately double that
- For more accuracy, do a preliminary analysis on multiple wells, then use AcuityXpress to view a histogram of DNA content across those wells and determine cutoffs

- Mitotic classification
- The average intensity (brightness)
 of the nuclear stain or a separate
 mitotic-specific marker (e.g.
 phospho-histone H3) is used to
 identify mitotic cells.

- DNA average intensity
- To use the DNA average intensity as a mitotic classifier, simply press Preview.

- DNA average intensity
- To use the DNA average intensity as a mitotic classifier, simply press Preview.
- A scatter plot will appear with an interactive horizontal slider for setting the intensity cutoff.

- DNA average intensity
- In the scatter plot, cells above the horizontal line are mitotic; cells below it are not mitotic.
- Mitotic cells with 2N content are classified as "Late M" and those with >2N content are classified as "Early M".

- Mitotic-specific stain
- Select the wavelength for the mitotic marker, enter a cutoff intensity value, and press Preview to see cells with that level of staining highlighted in the image.
- Mitotic cells with 2N content are classified as "Late M" and those with >2N content are classified as "Early M".
- Using a mitotic-specific marker, if available, is typically more accurate than using the DNA average intensity.

• If the assay has an apoptoticspecific marker, select the "Apoptotic classification" checkbox.

- Select the wavelength of the apoptotic marker.
- Define the stained area as nuclear, cytoplasmic, or both.
- Set the width settings (if the stain is nuclear, it should match the prior width settings).
- Set an intensity cutoff.

- Select the wavelength of the apoptotic marker.
- Define the stained area as nuclear, cytoplasmic, or both.
- Set the width settings (if the stain is nuclear, it should match the prior width settings).
- Set an intensity cutoff.
- Press Preview to test settings.

9. Module Settings – final settings

- Configure Summary Log select site-by-site measurements
- Configure Data Log select cell-bycell measurements
- Save Settings save analysis parameters to database
- Load Settings load saved analysis parameters
- Set to Defaults restore default analysis parameters
- Test Run test all settings together and display cell-by-cell results for this site

Summary Data (site-by-site measurements)

- DNA Structures
- DNA Background Value
- G0/G1 Cells
- 🎍 % G0/G1
- S Phase Cells
- % S Phase
- G2 Cells
- 2 % G2 م
- Early M Cells
- 🤳 % Early M
- Late M Cells
- 🌽 % Late M
- Apoptotic Cells
- % Apoptotic

- DNA Structures: Total number of nuclei
- DNA Background Value: The average background pixel intensity of the DNA image. This is the value that has been subtracted from intensity measurements if the "Auto Constant" option was chosen
- G0/G1 Cells: Number of nuclei classified as G0/G1
- % G0/G1: Percentage of nuclei classified as G0/G1
- **S Phase Cells:** Number of nuclei classified as S phase
- % S Phase: Percentage of nuclei classified as S phase
- G2 Cells: Number of nuclei classified as G2
- % G2: Percentage of nuclei classified as G2
- Early M Cells: Number of nuclei classified as early mitotic
- % Early M: Percentage of nuclei classified as early mitotic
- Late M Cells: Number of nuclei classified as late mitotic
- % Late M: Percentage of nuclei classified as late mitotic
- Apoptotic Cells: Number of nuclei classified as apoptotic
- % Apoptotic: Percentage of nuclei classified as apoptotic

Cell Data (cell-by-cell measurements)

- Cell: Assigned Label #
- Cell: Classification
- Cell: G0/G1
- Cell: S Phase
- → Cell: G2
- Cell: Early M
- Cell: Late M
- Cell: Apoptotic
- Cell: DNA Area
- Cell: DNA Integrated Intensity
- Cell: DNA Average Intensity
- Cell: Mitotic Integrated Intensity
- Cell: Mitotic Average Intensity
- Cell: Apoptotic Integrated Intensity
- Cell: Apoptotic Average Intensity

- Cell: Assigned Label # Cell label number (1 through total cell number)
- Cell: Classification The classification for this cell, i.e. "G0/G1" or "Apoptotic" or "S Phase"
- **Cell: G0/G1** 1 if the cell is in G0/G1, 0 if it is not
- Cell: S Phase 1 if the cell is in S Phase, 0 if it is not
- **Cell: G2** 1 if the cell is in G2, 0 if it is not
- Cell: Early M − 1 if the cell is early mitotic, 0 if it is not
- Cell: Late M − 1 if the cell is late mitotic, 0 if it is not
- Cell: Apoptotic 1 if the cell is apoptotic, 0 if it is not
- **Cell: DNA Area** Total square microns of the nucleus

Cell Data (cell-by-cell measurements)

- Cell: Assigned Label #
- Cell: Classification
- Cell: G0/G1.
- Cell: S Phase
- Cell: G2
- Cell: Early M
- Cell: Late M
- Cell: Apoptotic
- Cell: DNA Area
- Cell: DNA Integrated Intensity
- Cell: DNA Average Intensity
- Cell: Mitotic Integrated Intensity
- Cell: Mitotic Average Intensity
- Cell: Apoptotic Integrated Intensity
- Cell: Apoptotic Average Intensity

- Cell: DNA Integrated Intensity Total pixel intensity of the nuclear stain in the nucleus
- Cell: DNA Average Intensity Average pixel intensity of the nuclear stain in the nucleus
- Cell: Mitotic Integrated Intensity Total pixel intensity of the mitotic-specific stain overlapping the nucleus
- Note: appears only if Mitotic-specific staining used
- Cell: Mitotic Average Intensity Average pixel intensity of the mitotic-specific stain overlapping the nucleus
- Note: appears only if Mitotic-specific staining used
- Cell: Apoptotic Integrated Intensity Total pixel intensity
 of the apoptotic-specific stain overlapping the nucleus
- Note: appears only if Apoptotic classification used
- Cell: Apoptotic Average Intensity Average pixel intensity
 of the apoptotic-specific stain overlapping the nucleus
- Note: appears only if Apoptotic classification used.

Unclassified cell

1. (Optional) Is cell positive for apoptotic stain?

- 1. (Optional) Is cell positive for apoptotic stain?
- 2. What is DNA content (integrated nuclear intensity)?

1. (Optional) Is cell positive for apoptotic stain?

- 2. What is DNA content (integrated nuclear intensity)?
- 3. Is cell mitotic (mitotic stain or average nuclear intensity)?

Together through life sciences.

www.moleculardevices.com