

MetaXpress® 6 Software Guide

Custom Module Editor Example: Objects within Objects

UNLEASH YOUR BRILLIANCE

Date Revised 07/10/15 Version B

© 2012-2015. Trademarks property of Molecular Devices, LLC or their respective owners. For research use only. Not for use in diagnostic procedures.

Custom Module Editor Exercise Purpose

The purpose of this exercise is to step the user through creating a custom module designed to measure cell based on morphology: round versus elongated cells

You will need the EX4 Cell Morphology data set to complete this exercise.

Getting Started

- 1. Import the EX4 Cell Morphology image data set into MetaXpress
 - In the main menu, select Plate Data Utilities > Import Images
 - Click on **Select Directory** and navigate to the location of the image set
 - Select the EX4 Cell Morphology HTD file and enter a name for the Experiment Set
 - Click Import
- 2. Open the **Review Plate Data** dialog and select the EX4 Cell Morphology plate
- 3. Left-click and drag over the wells with images to open the thumbnail montage
- 4. Click on the thumbnail for well F01, Site 1

Getting Started

- 5. On the **Run Analysis** tab, click on the **Create Custom Module** button
- The goal of this exercise is to create a custom module that classifies the cells based on round vs. elongated morphology
 - CY5: Cell marker
 - DAPI: Nuclear marker
- 7. We will be measuring the following parameters:
 - Nuclear Count, Average Area, Average Intensity
 - Round Cell Count, Average Area, Average Intensity
 - Elongated Cell Count, Average Area, Average Intensity

8. Identify all objects

We need to create a segmentation of each cell. Although this can be done through multiple tools, using the nuclear marker (DAPI) can aid in better cytoplasmic segmentation.

- You will notice that both the DAPI and CY5 images have a high background. We can reduce this using the **Top Hat** tool under the **Modify Image** section in the ribbon.
- Use the **Top Hat** tool for both DAPI and CY5

2 Top Hat	- ×
Source	Cy5 (Alexa 647) 🔻
Size (pixels)	30
Filter Shape	Circle 🔻
Grayscale Reconstruction	
Result	Top Hat
Description:	
Finds small bright spots and size.	based on a filter shape
	Apply

- 8. Identify all objects continued
 - Next, use the Cell Scoring Application Module the Top Hat images of DAPI and CY5 to identify cells based on the nuclear (DAPI) and positive (CY5) marker.

Cell Scoring Objects	[Modified] 👻 🗙
All Nuclei —	
Nuclei Image	Clean DAPI 🔻
Approximate Minimum Width (µm)	5.2
Approximate Maximum Width (µm)	21.85
Intensity Above Local Background	1800
Positive Marker	
Marker Image	Clean Cy5 💌
Stained Area	Both 💌
Approximate Minimum Width (µm)	5
Approximate Maximum Width (µm)	36.23
Intensity Above Local Background	3000

- 8. Identify all objects continued
 - Use the **Logical Operations** tools found under the **Modify Objects** tools section in the ribbon to create a whole cell mask
 - Use the **OR Operation** to combine the positive nuclei and positive cytoplasm masks

Algorithm		Fast 🔻	
Negative Nu	uclei	Negative Nuclei]
Positive Nuc	lei	Positive Nuclei]
Positive Cyte	oplasm	Positive Cytoplasm]
Description:			
			Apply
Logical O	peratior	ns [Mo	dified] 🔹 🕽
Logical O	peratior Positive	ns [Mo Nuclei v	dified] 🔹 🕽
Logical O Source 1 (Source 2 (peration Positive Positive	ns [Mo Nuclei ▼ Cytoplasm ▼	dified] 🔻
Logical O Source 1 (Source 2 (Operation (Positive Positive OR 👻	ns [Mo Nuclei ▼ Cytoplasm ▼	dified] 🔻
Logical O Source 1 (Source 2 (Operation (Result	Positive Positive OR -	ns [Mo Nuclei ▼ Cytoplasm ▼	dified] 🔻

9. Generate subpopulation (round vs. elongated) segmentation masks based on shape factor (roundness)

Add a **Filter Mask** step located under the **Modify Objects** tools to filter objects based on shape factor

• Set filter type to **MinFilter** and use a value of 0.7. This will create a mask of round objects.

Next we need to create a segmentation mask of the rest of the objects (elongated). Add a **Remove Marked Objects** step under the **Modify Objects** section

 Use the Logical Operations mask from step 8 for Objects and the Filter Mask from the previous step to create the Elongated cells segmentation mask

Image Sour	rce Top Hat	•		
Mask Sourc	Logical Op	perations 🔻		
Measu	urement	Shape Factor 💌		
Filter Type		MinFilter 🔻		
Minim	num Value	0.7		
Includ	le Min/Max Val	ues 🔲		
		Delete		
Add Filt	er	Delete		
Add Filt Result	Filter Mask	Delete		
Add Filt Result Description	er Filter Mask			
Add Filt Result Description Remove o values of t	er Filter Mask bjects from the be objects.	mask based on measureme		

Marker Source	Filter Mask 🔻
1	
lesult	Remove Marked Objects
Description:	
Compares the c	objects in two images. If any part of a

For research use only. Not for use in diagnostic procedures.

The Measure Tab: Hierarchy of Measurement

- 10. Steps 8 and 9 have resulted in several masks
- 11. The next step is to make measurements. Click on the Measure tab and select the mask and images as shown below from the drop-down menus

Objects: mask of all objects that will eventually be measured (i.e. whole cell mask)

Features: masks that contain objects or subpopulations found in the mask of all objects (i.e. nuclei, round cells, elongated cells)

8	Measure Mask	[Modified]
-		
	Measurement Inputs	·
	Standard Area Value	1
	Create Object Overlay	r 📝
	Objects to Measure	
	Mask of Objects:	Whole Cell Mask 🔻
1	Image to Measure:	Cy5 (Alexa 647) 🔹 📖 🗙
1	0	
	Features within Each C	Dbject:
	Mask of Features:	Positive Nuclei 🔻
	Image to Measure:	DAPI • ×
	0	
		Remove Feature Group
Í	Features within Each C	bject:
	Mask of Features:	Round Cells 🔻
	Image to Measure:	Cy5 (Alexa 647) 🔹 📖 🗙
	0	
		Remove Feature Group
	Features within Each C	bject:
	Mask of Features:	Elongated Cells 🔻
	Image to Measure:	Cy5 (Alexa 647) 🔹 🛄 🗙
	0	
		Remove Feature Group
		Add Feature Group
	Descriptions	
	Description:	
		Apply

The Measure Tab: Configure measurements

- Click on the ellipses (...) button to display the Measurement Selection Configuration dialog
- There are over 50+ Available measurements whose names are customizable
- The measurements are arranged in **Average** and **Sum** columns
- Measurements under the Average column give statistics for the average of the objects being measured
- Measurements under the Sum column give statistics for the sum of the objects being measured
- For example:
 - For **Objects to Measure**, Average and Sum statistics will be the same
 - For **Features within Each Object**, Average statistics will give the average of the objects found and sum will give you the total

Measurement Name	Average	Column Label	Sum	Column Label	
Total Area		Total Area_Average		Total Area_Sum	
Hole Area	V	Hole Area_Average		Hole Area_Sum	
Area		Area_Average		Area_Sum	
Relative Hole Area		Relative Hole Area_Average		Relative Hole Area_Sum	
Standard Area Count	V	Standard Area Count_Avera		Standard Area Count_Sum	
Width		Width_Average		Width_Sum	
Height		Height_Average		Height_Sum	
Centroid X		Centroid X_Average		Centroid X_Sum	
Centroid Y		Centroid Y_Average		Centroid Y_Sum	
Intensity Center X		Intensity Center X_Average		Intensity Center X_Sum	
Intensity Center Y	V	Intensity Center Y_Average		Intensity Center Y_Sum	
Integrated Intensity	V	Integrated Intensity_Averag		Integrated Intensity_Sum	
Average Intensity	✓	Average Intensity_Average		Average Intensity_Sum	
Intensity Std. Dev.		Intensity Std. DevAverage		Intensity Std. DevSum	
Minimum Intensity	✓	Minimum Intensity_Average		Minimum Intensity_Sum	
Maximum Intensity		Maximum Intensity_Average		Maximum Intensity_Sum	
Perimeter	✓	Perimeter_Average		Perimeter_Sum	
Shape Factor		Shape Factor_Average		Shape Factor_Sum	
Fiber Length		Fiber Length_Average		Fiber Length_Sum	
Fiber Breadth		Fiber Breadth_Average		Fiber Breadth_Sum	
Length		Length_Average		Length_Sum	
Orientation		Orientation_Average		Orientation_Sum	
Breadth		Breadth_Average		Breadth_Sum	
Ell. Form Factor		Ell. Form Factor_Average		Ell. Form Factor_Sum	
Divel Central V		Divel Centroid V Average		Dival Controld V Sum	

Configuring Measurements

- 12. Click on the ellipses (...) button next to **Objects to Measure** (Nuclei)
 - Deselect the Average column
 - Select the following under the Sum column
 - Total Area
 - Average Intensity
- Name each measurement as desired
- 13. Click on the ellipses (...) button next to **Features Within Each Object** (Nuclei, Round Cells, Elongated Cells)
 - Select the following under the Average column
 - Total Area
 - Average Intensity
 - Select the following under the Sum column
 - Feature Count
 - Name each measurement as desired
 - Repeat this for each feature
- 14. You can now run, save, and test on other wells the custom module to make sure settings are optimized.

Measurement Name	Average	Column Label	Sum	Column Label
Total Area	v	Total Area_Average		Total Area_Sum
Hole Area	v	Hole Area_Average		Hole Area_Sum
Area	V	Area_Average		Area_Sum
Relative Hole Area	V	Relative Hole Area_Average		Relative Hole Area_Sum
Standard Area Count		Standard Area Count_Avera		Standard Area Count_Sum
Width	V	Width_Average		Width_Sum
Height	V	Height_Average		Height_Sum
Centroid X		Centroid X_Average		Centroid X_Sum
Centroid Y		Centroid Y_Average		Centroid Y_Sum
Intensity Center X		Intensity Center X_Average		Intensity Center X_Sum
Intensity Center Y		Intensity Center Y_Average		Intensity Center Y_Sum
Integrated Intensity		Integrated Intensity_Averag		Integrated Intensity_Sum
Average Intensity		Average Intensity_Average		Average Intensity_Sum
Intensity Std. Dev.		Intensity Std. DevAverage		Intensity Std. DevSum
Minimum Intensity	V	Minimum Intensity_Average		Minimum Intensity_Sum
Maximum Intensity	V	Maximum Intensity_Average		Maximum Intensity_Sum
Perimeter		Perimeter_Average		Perimeter_Sum
Shape Factor	V	Shape Factor_Average		Shape Factor_Sum
Fiber Length	V	Fiber Length_Average		Fiber Length_Sum
Fiber Breadth	V	Fiber Breadth_Average		Fiber Breadth_Sum
Length		Length_Average		Length_Sum
Orientation		Orientation_Average		Orientation_Sum
Breadth		Breadth_Average		Breadth_Sum
Ell. Form Factor		Ell. Form Factor_Average		Ell. Form Factor_Sum
Divel Central V		Dival Controid V Average		Dival Controid V Sum

Final Segmentation Mask Example

Cy5 (Alexa 647)

Cy5 (Alexa 647)

For research use only. Not for use in diagnostic procedures.

Support Resources

- F1 / HELP within MetaXpress® Software
- Support and Knowledge Base: <u>http://mdc.custhelp.com/</u>
- User Forum: http://metamorph.moleculardevices.com/forum/
- Request Support: <u>http://mdc.custhelp.com/app/ask</u>
- Technical Support can also be reached by telephone:
 - 1 (800) 635-5577
 - Select options for Tech Support → Cellular Imaging Products → ImageXpress Instruments

MOLECULAR DEVICES

ADVANCING PROTEIN AND CELL BIOLOGY

For research use only. Not for use in diagnostic procedures.