Managing and Evaluating an HCS siRNA Screen of the p53 Pathway with AcuityXpress Software

Laura Corson¹, Pierre Turpin², Thomas Hunsaker¹, Jeff Eastham-Anderson¹, James Lee¹, Emmy Verschuren¹, Rami Hannoush¹, David Davis¹, Yun Li¹, Grischa Chandy², Jignesh Joshi¹, James Fitzgerald¹, & Peter Jackson¹ ¹Genentech Inc., ²MDS Analytical Technologies

Abstract

An advantage of conducting High Content Screening (HCS) is the vast amount of biologically contextual data generated. However, in practice, the logistics of implementing image acquisition, image quantification, data management, and multiparametric analysis can be complex and cumbersome. Here, we present a study demonstrating the power of using commercially-available software from MDS Analytical Technologies to facilitate the management and evaluation of an HCS siRNA screen, designed to yield insight into genes of the druggable genome that impinge upon the p53 tumor suppressor pathway. RPE cells +/- p53 were reverse transfected with 7657 siRNA pools and stained for p53, p21, Ki67, and pH2AX under basal conditions and upon treatment with a DNA damaging agent. Over 1.3 million images (~1 terabyte) were acquired and analyzed with the MetaXpress software. The AcuityXpress software was then used for a number of key downstream processes including (1) annotation, (2) data quality review, (3) data normalization, (4) image review, and (5) multi-parametric profiling. Data plotting, data analysis, data visualization, and group selection tools streamlined the identification of siRNAs with phenotypic effects of interest. Links between the AcuityXpress software and web-based databases further facilitated review and prioritization of screening hits. The HCA management and analysis software, AcuityXpress, makes full scale, multiparametric siRNA screens of this complexity feasible in a small lab setting, and thus permits investigators to take more comprehensive, multipronged approaches to probe deep into biological pathways of interest.

Screening Strategy

Benefits of Using AcuityXpress 2.0 for siRNA Screen

STREAMLINE DATA ANNOTATION

> Download siRNA source plate data from Genentech RNAi database as Excel file Gene) MgC20741 NM_019561 Pools Custom-Pools 1 8/R000162 A10 .70.4 M.006946.01

>	Use Excel macro to	USP39 NM USP39 NM USP34 23M	ate siRN	Custom - Pools Custom - Pools Custom - Pools	1 SIR000162 1 SIR000162 1 SIR000162	A2 .704 M A3 220 M A4 220 M	000014.00 1000017.00 1000012.00	compatible with A	4 X2
	402 \$LayoutDataEnd\$ 403 \$LayoutDataEnd\$ 404 Rows=16	WELL	GROUP (Oligo ID)		CONCENTR ATION1	UNIT1		Designate if well is	
	405 Columns=24 406 Format=3 407 Compounds=1	K3 L3 M3	M-013566-00 M-013566-00 M-017673-00	UBQLN2 UBQLN2 CUL7	0	p53+ No Drug p53+ No Drug p53+ No Drug		treated with etoposide or no drug	
	408 Description= 409 Name=D109SIR00016 410 ID_Name=Barcode 411 ID_Name=Barcode	6 03 P3	M-017673-00 M-005965-00 M-005965-00	CUL7 RNF19 RNF19	0	p58+ No Drug p53+ No Drug p53+ No Drug		Designate if siRNA	
	412 ID_Value=D109SIR000165 413 \$LayoutHeaderEnd\$ 414 \$LayoutDataStart\$	0165 A4 C4	M-005742-00 M-005742-00 M-032227-00	TM7SF1 TM7SF1 GPR150	0	p53- No Drug p53- No Drug p53- No Drug		singles (1-4)	

Use "Batch Annotation" in AX2 to apply annotation to wells based on plate barcode

QC & NORMALIZE DATA

> Use heatmaps to identify/exclude problematic > Normalize to designated controls on every plate

> Center & scale datasets (z scores)

FACILITATE DATA & IMAGE REVIEW

Review phenotypic characteristics of interest > Drill down to image in MDCEarth

Compound [Well Annotation], Group [Well Annotation]	'p53+ No Drug'- [Total Cell.	'p53- No Drug' - [Total Cell	'p53+ No Drug' - [p53 Avg Inten	'p53- No Drug' - [p53 Avg Inten	'p53+ No Drug' - [p21 Avg Inten	'p53- No Drug' - [p2 Avg Inten
MDM2 otp. [TEST]	11.253	67.236	108.210	18.550	105,699	27.579
TP53, [L-003329-00]	150.621	109.242	7.597		5.743	5.345
TP53. [M-003329-01]	125,865	109.166	-4.836		-4:455	-0.674
USP7. [TEST]	47.473	82.216	120.118	13,768	83.946	2.335
p21.[]	114,293	106.055	47.389	1.684	2.999	1.064
NCONTROL D	100.956	112 406	28 350		30 289	8829

STREAMLINE MULTI-PARAMETRIC ANALYSES

> Use variety of analytical methods to identify siRNAs yielding phenotype of interest Example: MDM2-Like → High basal levels of p53 & p21, normal p53- cell#, reduced p53+ cell#

REVIEW BIOLOGICAL CONTEXT

> Hyperlink to external databases for published information on genes of interest in order to prioritize hits for follow up

End Product: A searchable database of genes of the druggable genome that impinge upon the p53 pathway

Query dataset for genes with phenotype of interest Examples: Which genes are required for inducing a p53-p21 response? (% p53+, %p21+ in etoposide plate)

Which genes mediate a p53-dependent effect on proliferation/survival? (Nuclei count p53- vs p53+ wells) Which genes influence basal p53 levels? (% p53+ in basal plate)

Query YFG to understand potential interplay with p53 pathway

Genentech