

Implementing 3D neural spheroids in drug discovery: phenotypic screening and compound profiling using structural and functional assays

Carole Crittenden | Product Applications Scientist, Molecular Devices Blake Anson, Ph.D. | VP Business Development, StemoniX

June 10, 2020

Agenda

MOLECULAR DEVICES

- Using microBrain[®] neuronal microspheroids
- Introducing the FLIPR[®] Penta High-Throughput Cellular Screening System
- Peak analysis with ScreenWorks[®] Peak Pro 2 software
- Calcium oscillations in neural spheroids
- Confocal imaging and 3D image analysis of compound treated neural spheroids
- Multi-parametric evaluation of neurotoxicity effects

Neuronal microspheroids

StemoniX microBrain[®] 3D activity can be monitored in high throughput format

Neuronal activity is monitored as calcium oscillations detected by high throughput kinetic fluorescence (FLIPR® Tetra and FLIPR® Penta Systems

MOLECULAR

FLIPR Tetra System

- Spontaneous activity on one well
- Detected oscillations correspond to synchronized calcium oscillation occurring on the sphere

From StemoniX presentation at ISSCR 2019

Stemoni**X**

For research use only. Not for use in diagnostic procedures.

© 2019 Molecular Devices, LLC. Trademarks are the property of Molecular Devices, LLC or their respective owners. | p4

The FLIPR Penta High Throughput Cellular Screening System

- Choice of camera
 - High Speed EMCCD
 - EMCCD
- Updated ScreenWorks 5.0
- Optional Peak Pro 2 Software Module
- 6,000 images per protocol
- iPSC derived Cardiomyocytes and Neuronal cell assays
- Same great original assays including GPCRs, MP, Potassium, and luminescence

Benefits of FLIPR Penta system

• 100 Hz camera enables new biology

 Better understand iPSC cardiomyocyte and neuron calcium signaling biology with more signal detail provided by the HS EMCCD camera

- Greatly enhanced peak characterization of calcium oscillation assays with PeakPro 2.0 software
- All of the great technologies used for screening and target biology over the years.

Protocol

- microBrain microspheroids received in wells from StemoniX and cultured a few days
- Cells are incubated for 2 hours with FLIPR[®] Calcium 6 Assay Kit Dye
- Compounds are added and read on the FLIPR Penta System at intervals from 15 minutes to 24 hours

Difference in temporal resolution

Acquisition @8Hz

Not enough data to see and identify EAD-like events (green diamonds)

EAD-like events easily visible and identified by Peak Pro 2 software

ScreenWorks 5.0 Peak Pro 2 Software

DEVICES

For research use only. Not for use in diagnostic procedures. © 2019 Molecular Devices, LLC. Trademarks are the property of Molecular Devices, LLC or their respective owners. | p9

Characterization of oscillation patterns

	Measurement Terminology Illustrated								
Item	Description								
A	Main peak amplitude								
В	Linear decay slope								
С	Main peak interval used to calculate the peak rate, expressed in peaks per minute (PpM)								
D	Early afterdepolarization-like event (EAD-like) intervals used to calculate the EAD-like event rate, expressed in peaks per minute (PpM)								
E	Rise slope								
F	EAD-like event amplitude								
G	Decay slope								
Н	Calcium transient duration (CTD)								
	Calcium transient duration from peak position (CTDP90)								
J	Start of an event								
K	End of an event								
L	Main peak								
M	Early afterdepolarization-like event (EAD-like)								

DEVICES

For research use only. Not for use in diagnostic procedures.

© 2019 Molecular Devices, LLC. Trademarks are the property of Molecular Devices, LLC or their respective owners. | p10

Oscillation Patterns in neuronal spheroids

Variable Amplitude 600 MK-801 3 μM Decreased Frequency, Spacing Irregularity

Baclofen 10 µM

Time, seconds

For research use only. Not for use in diagnostic procedures. © 2019 Molecular Devices, LLC. Trademarks are the property of Molecular Devices, LLC or their respective owners. | p11

DEVICES

Oscillation patterns in neuronal spheroids

Decreased Frequency, Secondary peaks

For research use only. Not for use in diagnostic procedures. © 2019 Molecular Devices, LLC. Trademarks are the property of Molecular Devices, LLC or their respective owners. | p12

Concentration dependencies

Concentration-dependencies for changes in peak counts and amplitudes were calculated using 4-parametric curve fits and EC₅₀ values were determined.</sub> Other readouts did not have monotonous changes, therefore minimal concentrations causing indicated phenotypes (secondary peaks, amplitude irregularities, spacing irregularities) were recorded. 4-paramentiric curves indicated for the following compounds:

tamoxifen- light bluedopamine- green squareamiodarone- pinkcytarabine- yellowpindolol- brownlipopiridine- orange

MOLECULAR DEVICES

pindolol- brown lipopiridine- orange stilbestrol- green cephalosporin- blue

Taxol- purple carbamazepine- black tetraethyl thiuram- gray

> For research use only. Not for use in diagnostic procedures. © 2019 Molecular Devices, LLC. Trademarks are the property of Molecular Devices, LLC or their respective owners. | p13

Viability studies using the ImageXpress® Micro Confocal system

- Confocal imaging and 3D image analysis
- Characterize compound effects on morphology and viability of 3D neural spheroids
- Spheroids treated with 30 μM drug for 24 hours
- Cells stained with DAPI, Calcein AM, and Mitotracker Orange

Assessment of spheroid morphology and viability by highcontent imaging

- Projection images analyzed using the Custom Module Editor and Cell Scoring Algorithms
- The images shows spheroid nuclei (blue), viable cells stained with Calcein AM (green), and viable mitochondria (orange)

Calcium oscillation patterns

DEVICES

For research use only. Not for use in diagnostic procedures. © 2019 Molecular Devices, LLC. Trademarks are the property of Molecular Devices, LLC or their respective owners. | p16

DEVICES

Multi-parametric evaluation of neurotoxicity effects

Neurotoxic drugs

	Compounds	Peak Count ¹	Amplitude (decrease) ¹	Oscillation Frequency	Fibrillations*	Oscillation Stop*	Amplitude Irregularity*	Peak spacing Irregularity*	Secondary Peaks*	Cytotoxicity*	Mitochondria toxicity*	Max concentration	Description
1	Pindolol	57.3	30	up/down		100	3	3	3			100	Beta-blocker
2	Diethylstilbestrol	>100	39.3	down		100	10	10	10		100	100	Estrogen agonist
3	Tamoxifen	6.43	3.59	down		100	30	30		100	100	100	Estrogen receptor modulator
4	Taxol	9.15	>30	down		30	10	3	3	100	100	100	Anti cancer
5	Cefepime HCI											100	Antibiotic
6	Ciprofloxacin											100	Antibiotic
7	Cephalosporine		~100				100	30	30			100	Antibiotic
8	Gentamycin Sulfate											100	Antibiotic
9	Isoniazid							100			100	100	Antibiotic
10	Berberine (HCI)	~30	no effect	down		30	10	10	10		30	30	Alkaloid, antibiotic
11	ßestradiol	202		down			30	30	30			100	Hormone, osteoporosis
12	Amiodarone	8	1.48	up/down		30	3	10				100	Anti-arrhythmic drug
13	Oxotremorine M						10				30	30	Anti tremor
14	Pentylenetetrazole									1000	1000	1000	Respiratory stimulant
15	Pilocarpine (HCI)											31	Glaucoma drug
16	6-hydroxydopamine hydrobromide	>100		down						30	30	30	Neurotoxin induces a reduction of dopamine levels in the brain
21	Linopiridine (HCI)		100				3	10	10			100	Cognition-enhancing drug
22	Tetraethylthiuram disulfide	200	34	down			100	30		100	100	100	Anti-alcohol abuse
23	Carbamazepine	101	>30	up/down		100	30	10	30			100	Anti-epileptic drug
24	Amoxicillin	no effect	no effect	no effect		no effect	no effect	no effect	no effect	no effect	no effect	100	Negative control

 EC_{50} values (1) or lowest concentrations (μ M) that cause specific changes(*) are indicated for different readouts. No changes indicated with blank cells.

For research use only. Not for use in diagnostic procedures. © 2019 Molecular Devices, LLC or their respective owners. | p17

Summary

- Multi-Parametric studies combining calcium oscillation peak analysis on the FLIPR Penta system and viability imaging analysis on the ImageXpress Micro Confocal system
- Data quickly shows the effects of neuro-mediators and neuroactive drugs so that they can be readily detected and studied
- Inducers of seizure can be detected (predictive value)
- Sensitivity to neurotoxic drugs can be evaluated
- New Peak Pro 2 Software features enable better analysis and more read-outs useful for characterization of compound effects on neural activity also prediction of neurotoxicity and seizure-inducing effects

Nervous System Function

The complex interplay of multiple developmental and operational processes

Organoid / Spheroid Function

The complex interplay of multiple developmental and operational processes

StemoniX

Accelerating the Discovery of New Medicines

Implementing 3D neural spheroids in drug discovery: Identifying new and safe compounds through phenotypic screening and compound profiling using functional and structural assays.

- StemoniX Overview
- microBrain[®] 3D hiPSC-derived neural spheroids
- Case Studies
 Toxicity Testing
 Screening
 Disease modeling

StemoniX Key Differentiators

Leader in Industrialized Human microOrgans

How:

Leverage core competencies in iPSC biology, high-tech manufacturing and engineering to create scale, consistency and mature functionality

Why?

Provides a richer and more relevant context for better answers. Demonstrated utility in both drug discovery and toxicity testing.

Novel Therapeutic Assets

How:

Identify, optimize and produce new medicines discovered through human microOrgan technology and AI drug discovery

Why?

Optimizes the Discovery pipeline, saving front end time and dollars and downstream patent life.

High-Throughput Drug Discovery (plus Gene Editing) Software Analytics & Machine Learning (Al)

Accuracy

Biology-Tuned Analytics *How:*

Data science applied to functional biology matured to demonstrate key disease characteristics

Why?

More accurate, robust, and biasfree data extraction lays a stronger foundation for higherorder analytics such as hierarchical clustering, machine learning, and AI.

Stemoni**X**

Speed

Human Organoids

microBrain[®] 3D

Main Features

- Single donor human iPSC line
- Co-culture of neurons and astrocytes
- Key neuronal and astrocytes markers
- Spontaneous synchronized activity
- Amenable to HTS (384-well format)

Pre-plated spheroids Robust, easy to use, rapid workflow

384w microBrain 3D plate

Features:

- 1 spheroid per well
- Consistent size across the plate
- Able to use within one week of receipt
- Amenable to acute and chronic (weeks) exposures

Consistent, reproducible structure in ready-to-use format

microBrain 3D - Gene Expression Neurotransmitter receptor qPCR Array panel

microBrain 3D - Relevant mixture of astrocytes and neurons

Co-culture enables interrogation of complex biology

microBrain 3D demonstrates spontaneous synchronized neural activity

• Spheroid electrical activity is confirmed via MEA recordings

 Neuronal origin of activity is confirmed via synapsin-targeted Ca²⁺ measurements with highspeed CFM

microBrain 3D – Functional Output

Spontaneous neuronal activity

- Spontaneous Ca²⁺ oscillations
- Oscillations correspond to synchronized Ca²⁺ waves

Ca²⁺ oscillations provide a phenotypic readout of underlying functional neuronal activity

microBrain 3D – Phenotypic Output Reflects Pathway Activity

microBrain 3D provides a human system for physiologically relevant interrogation of druggable pathways

microBrain 3D activity is reproducible

- Inter-plate reproducibility of spontaneous neuronal activity
- Each experiment number correspond to a different microBrain 3D plate

Reproducible baseline and drug response behavior

Case Study 1 Toxicity Testing with with microBrain 3D Toxic compounds interfere with microBrain 3D activity

microBrain 3D in Toxicity Studies Endpoint specific and terminal toxicity detection

Nuclei- Hoechst nuclear stain, blue Viability- Calcein AM, green Mitochondria- MitoTracker Orange, red

Sirenko et al., 2019

- Mitochondrial function is assessed with MitoTracker Orange
- Viability is assessed with Calcein AM
- Control spheroids show extensive overlap of mitochondrial and viability markers (yellow-brown)
- Compound incubation shows loss of both mitochondrial function and loss of viability

Case Study: Readout Sensitivity

Chemical library from NTP demonstrates the sensitivity of functional readouts

BMC concentrations for select compounds

- microBrain 3D spheroids were exposed to an NTP library of diverse chemicals
- Ca²⁺ oscillation endpoints were compared to endpoint viability assay
- Bench Mark Concentration (BMC) were calculated across endpoints

Functional endpoints are more sensitive than terminal assay endpoints

Case Study 2: Screening with microBrain 3D SelleckChem and Lopac¹²⁸⁰

Example Screen

- ✓ FDA Approved Compound library (SelleckChem), 10µM single dose, 384 well format
- ✓ Bidirectional modulation; increased and decreased activity
- ✓ Reproducible control responses with large assay window enables stringent hit criteria

Screening with microBrain 3D Broad-based and granular interrogation

Identifying hits across classes

Synaptic Transmission

- Glutamatergic, GABAergic, Cholinergic, Serotonergic, Dopaminergic

Ion Channels and Transporters

- Na⁺, K⁺, Ca²⁺, ATPases

Adrenergic and Adenosine signaling

Neurological Disorders

- Convulsions, Anxiety, Depression, Addiction

Cell Biology

- Homeostasis, Cytoskeleton, Kinases, 2nd messengers, etc.

microBrain 3D enables drug discovery and interrogation across a broad base of pathways and classes

Screening with microBrain 3D

Examining intra-family specificity and practical implementation

Opioid Receptor Hits from LOPAC¹²⁸⁰ Screen

Compound Name	Compound Class Action		Receptor Selectivity	% Inhibition (Peak Frequency)	% Inhibition (Avg. Peak Amplitude)	
				microBrain-3D	microBrain-3D	
Loperamide hydrochloride	Opioid	Ligand (Ag)	(mu)	85.1	-36.5	
(-)-trans-(1S,2S)-U-50488 hydrochloride	Opioid	Agonist	kappa	30.5	-5.8	
U-62066	Opioid	Agonist	kappa	29.7	-11.8	
ICI 204,448 hydrochloride	Opioid	Agonist	kappa	27.4	-35.4	
GR-89696 fumarate	Opioid	Agonist	kappa	19.6	24.5	
(±) trans-U-50488 methanesulfonate	Opioid	Agonist	kappa	19.2	25.5	
Carbetapentane citrate	Opioid	Ligand	sigma1	16.5	-1.5	
(+)-Cyclazocine	Opioid	Antagonist	(?)	13.0	28.0	
SNC80	Opioid	Agonist	delta	2.6	1.4	
Naltrexone hydrochloride	Opioid	Antagonist	(?)	0.1	-35.4	
PRE-084	Opioid	Agonist	sigma1	-1.8	0.5	
L-687,384 hydrochloride	Opioid	Agonist	sigma1	-3.4	16.2	
Noscapine hydrchloride	Opioid	Ligand (Ag)	(sigma)	-5.4	25.8	
U-69593	Opioid	Agonist	kappa	-7.6	11.4	
Naloxone hydrochloride	Opioid	Antagonist	(?)	-11.2	1.1	
Naltrindole hydrochloride	Opioid	Antagonist	delta	-17.8	31.6	

Granular dissection of intra-family specificity

StemoniX – NCATS CRA: NIH HEAL Initiative Helping to End Addiction Long-term

Identify signature opioid response

- Identify potentially addictive compounds
- Prioritize library and med chem efforts
- Prescreen drug candidates prior to more expensive, low-throughput experiments

https://www.fiercebiotech.com/biotech/nih-taps-stemonix-s-organ-a-chip-for_opioid-addiction-research

- Affect primarily females (X-linked disease). Males are severely affected;
- Early onset (6-12 months);
- Autism-like behaviors, seizures and loss-of-language;
- Mutations in the MECP2 gene present in >95% of the cases;
- MeCP2 is a transcription regulator, binding throughout the whole genome;
- Disease Line: Rett Syndrome (RTT) hiPSC
 - Control line (WT): Parental control
 - Disease line (RTT): male, nonsense MeCP2 mutation (Q83X)

microBrain 3D and microBrain 3D-RTT show good reproducibility

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Column

400

CNT

CoV: 3.16%. 4.10%

RTT

StemoniX

100

0

www.stemonix.com

microBrain 3D and microBrain 3D-RTT have similar cellular composition

• Neuronal and glial cell populations in 3D control and 3D RTT microBrain spheroids

Control microBrain 3D

microBrain 3D-RTT

microBrain 3D-RTT shows altered neurite outgrowth

- microBrain 3D and microBrain 3D-RTT were plated on Matrigel coated plates
- Brightfield images were acquired 72hr after plating

WT

Neurite Outgrowth Assay 72hr after plating

microBrain 3D-RTT displays altered electrophysiology phenotype

- Calcium tracings from spontaneous calcium activity recorded using FLIPR Tetra $^{\ensuremath{\mathbb{R}}}$

RTT spheroids

- SMART (Selected Molecular Agents for Rett Therapy) library of compounds
 - Vetted collection of compounds (using bioinformatics methods) tightly focused on Rett syndrome and its biological causes;
- Modulators for many key pathways misregulated in Rett Syndrome;
- Screening summary:
 - > 296 compounds at 1 μ M;
 - Four replicates on independent plates;
 - Vehicle control: DMSO;
 - ➤ Two weeks of chronic treatment.

microBrain 3D-RTT identifies compounds that 'rescue' the iPSC-RTT phenotype

• Single endpoint results from screening the SMART library

- Many compounds **rescue** the measured RTT phenotype
- Many compounds do not rescue the phenotype
- Data are messy.....

Multiparametric Analysis 'Cleanly' Identifies Rescue

Multiple parameters identify rescue while phenotypic screening identifies multiple target pathways

microBrain 3D - human-based tool for CNS modeling in vitro
 HTP, relevant, complex neuronal culture system with a reduced workflow burden

> Functional and structural toxicity prioritization

> Can be used to screen diverse neurobiology endpoints

Demonstrated ability for human disease modeling and target pathway identification