Developing High Throughput Mammalian Expression Platforms

BPN Conference, Brisbane 2009

Ben Hughes

(ben.hughes@uq.edu.au)

AIBN, University of QLD

AIBN houses > 350 researchers

- Varied human health research areas.
 - Biotherapeutic production
 - Vaccines and delivery systems

NCRIS Biologics Facility

- 200m² of dedicated clean rooms for mammalian cell culture and downstream processing
- Bioreactors to 100-L scale
- Protein analysis and characterisation

Acyte Biotech Pty. Ltd.

- Spin-off company (UNSW/UQ)
- Novel IP for mammalian expression

Presentation Outline

- Background and drivers
 - Use of mammalian cells for biotherapeutic manufacture
 - mAbs and CHO cells
- Developing high throughput platforms
 - Transient protein production
 - EpiCHO system
 - Stable cell lines
 - Leveraging high throughput instruments
 - Fed-batch optimisation

Mammalian Biotherapeutic Manufacture

Widely used host system

- Account for ~ 50% of marketed recombinant proteins
 - > 70% produced in CHO¹
- Well characterised → platform processes to 20KL

Produce bioactive molecules

- Correct folding and desirable post-translational modifications
- Proven track record / acceptance by regulatory bodies

Ideally suited for mAb production

- > 30% of biopharmaceuticals in current clinical trials²
 - Sustained double digit growth through 2007
 - Surpassed growth factors as the highest selling category of biologics

¹ Aggarwal S, 2007, Nat. Biotechnol

² Walsh G, 2006, Nat. Biotechnol.

Challenges with Mammalian Systems

Time and resource-intensive

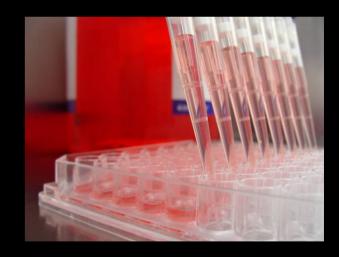
- Technically complex, lower cell density and yields
 - Higher COGs
- Selection of high-producing, quality cell lines
 - Clone identification / verification ranges from 4-12 months
 - Cell line instability issues

Restricted access

- Major advances of the last decade are not 'freely' available
 - Heavy licensing costs for access to production cell lines / vectors
 - Proprietary media and fed-batch processes

Rapid Production of mAbs

- Recognising these challenges our group directs research towards:
 - Improved cell lines (focus on CHO and mAbs)
 - Molecular engineering of expression platforms
 - High-throughput and intelligent single cell isolation
- Consortium formed under Federal ICIP grant
 - Low-cost mAb production (transient and stable mammalian cells)
 - Acyte Biotech Pty. Ltd
 - Agen Biomedical Ltd.
 - BioPharmaceuticals Australia
 - Demonstrate that this technology is available to Australian researchers and companies
 - There exist alternative options for mammalian expression
 - Adding value to your process

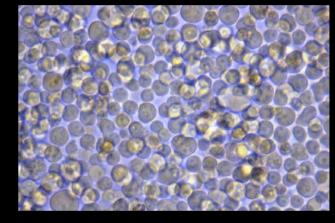


Presentation Outline

- Background and drivers
 - Use of mammalian cells for biotherapeutic manufacture
 - mAbs and CHO cells
- Developing high throughput platforms
 - Transient protein production
 - EpiCHO system
 - Stable cell lines
 - Leveraging of FACS and ClonePix instruments
 - Fed-batch optimisation

Transient Expression Systems

- Rapid generation of recombinant protein
 - Allows for timely screening of pre-clinical drug candidates
 - Gram quantities in 1-3 weeks
 - Expression in a wide variety of mammalian systems
 - Transient systems in HEK continue to outperform CHO
- Challenges for transient systems:
 - Rapid dilution of plasmid DNA as cell proliferates
 - Continuity of host cell line
 - Early stage material often manufactured in HEK, while final production host is CHO
- ► Ideally require a CHO-based transient system that maintains high expression levels over an extended period



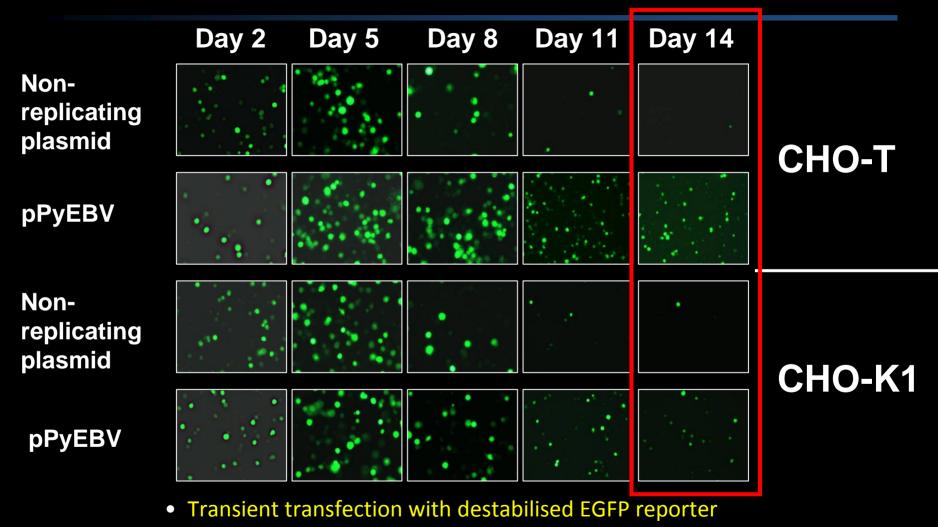
The EpiCHO System

 EpiCHO is a transient expression system that provides for amplified and prolonged recombinant protein

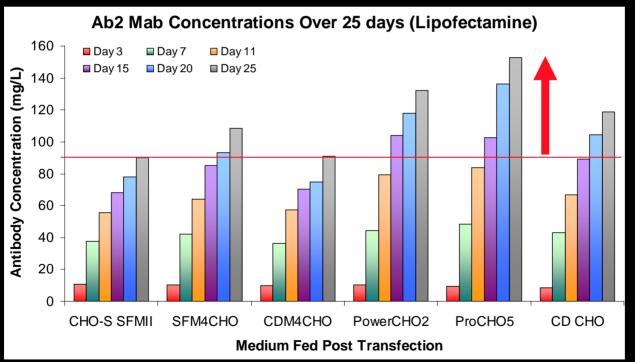
expression

- Two key elements:
 - 1. The host cell line CHO-T
 - Suspension adapted to SFM
 - Constitutively expressing PyLT

2. The expression vector pPyEBV



Prolonged Expression with EpiCHO

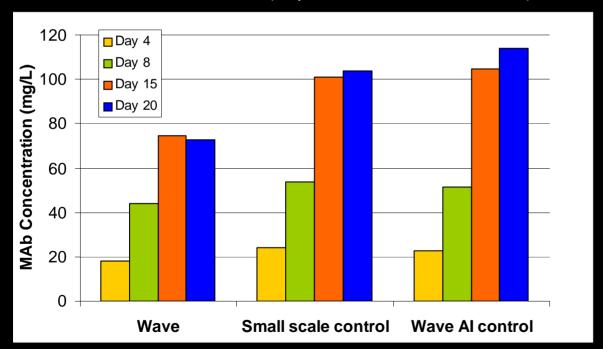


Prolonged mAb expression with EpiCHO

CHO-T cells transfected with Agen Ab

- Evaluated productivity in different growth media
 - 50% media dilution 4 hours post transfection
 - Shift to hypothermic conditions (32°C)

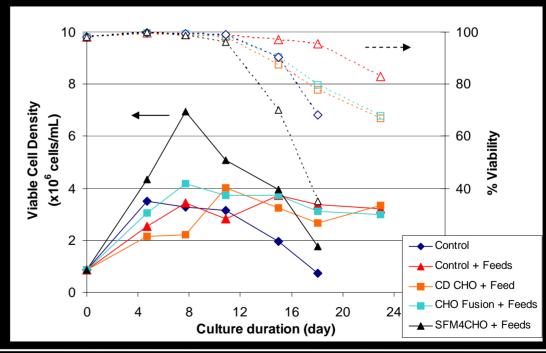
60% increase



Scalable Transient Production

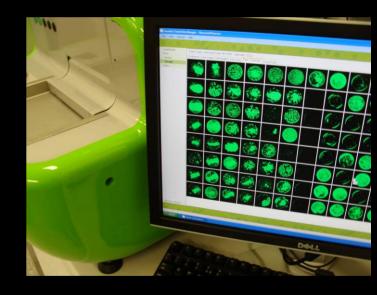
- Traditionally challenging to maintain productivities and efficiency upon scale-up
 - Transfected Agen mAb at 7L volume in a disposable Wave reactor
 - Small scale controls (duplicate 125mL shake flasks)

- Wave culture not linearly scaled
- Gram quantity from a 10L wave should be achievable



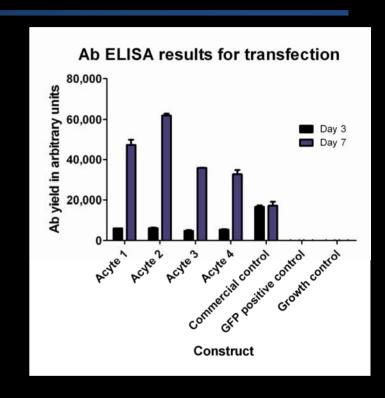
EpiCHO Path Forward

- Continue large-scale transfections
 - Optimise wave growth (base addition for pH control)
 - Evaluate alternative culture vessels (3-L disposable flasks)
- Evaluation of new media (data for 32°C growth only)
 - Fed-batch
 - Hydrolysates
 - Supplements
 - IGF-1
 - rTransferrin
 - Extended culture duration and viability
 - 50% increase in IVC



Presentation Outline

- Background and drivers
 - Use of mammalian cells for biotherapeutic manufacture
 - mAbs and CHO cells
- Developing high throughput platforms
 - Transient protein production
 - EpiCHO system
 - Stable cell lines
 - Leveraging high throughput instruments
 - Fed-batch optimisation


Stable Expression Technology

We have assembled a complete set of "in-house" expression vectors

- Modular design
- Proprietary high-level expression technology
- Out-performs commercial mammalian vectors
- Options for several expression units on a single plasmid

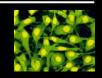
Stable cell line

- Based on a low-passage ATCC CHO-K1 variant
 - Suspension adapted
 - Maintained in fully defined conditions
- Custom designed metal amplification system
- Modified DHFR+ vectors also in use

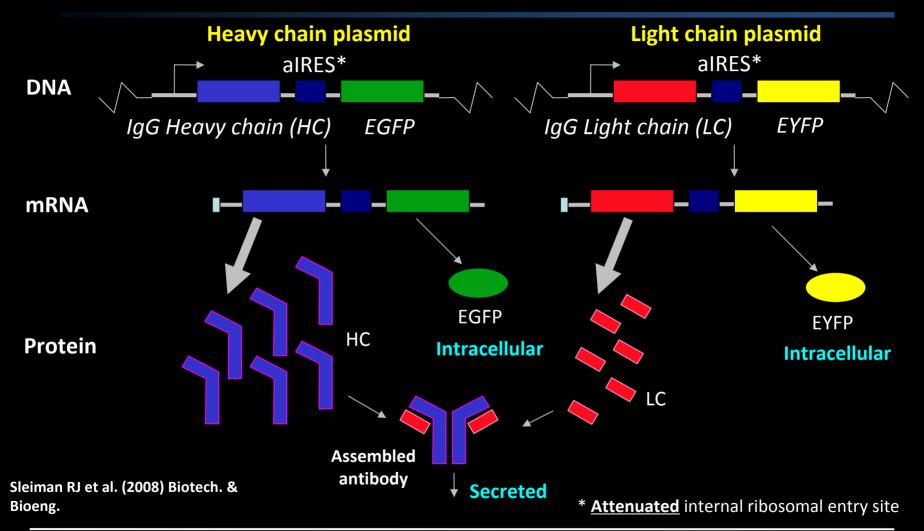
High Throughput Technologies for Cell Selection

Automated high-throughput instruments:

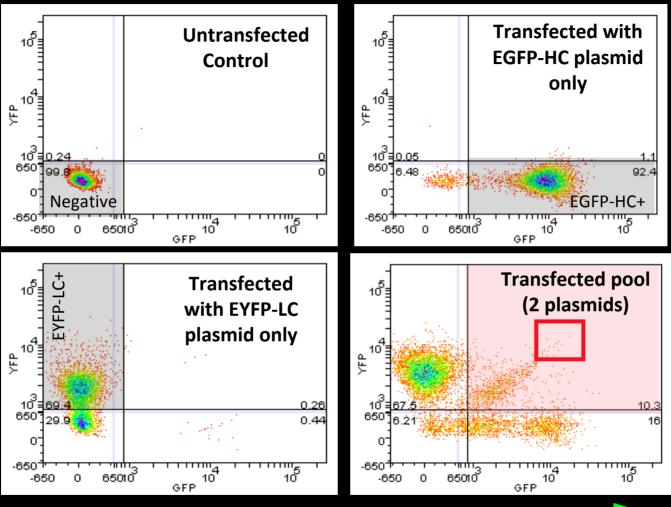
Genetix ClonePix FL



BD FACS Ariall


- Facilitates rapid selection of high-expressing clones
 - Utilises Acyte technology
 - Expression vectors with two-colour transcriptional reporters

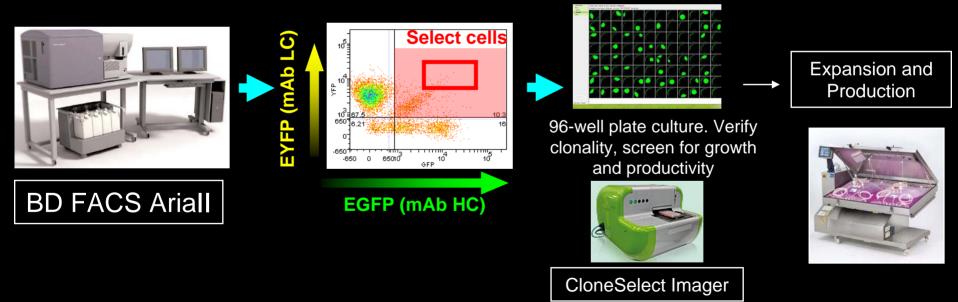
Acyte Dual Bicistronic Reporter / Expression Vectors



FACS Single cell analysis of IgG LC/HC transcription in transfected pools

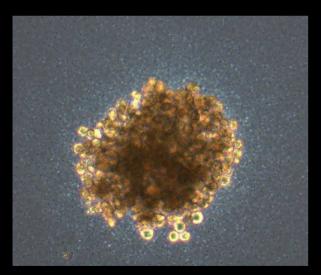
Antibody
expressing cells
(both chains)
High mAb
expressers

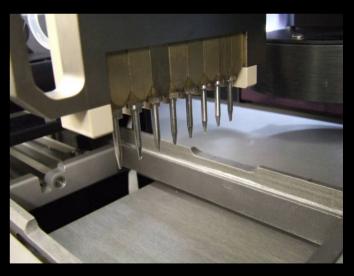
EGFP Fluorescence (IgG HC Transcription)



Typical FACS Workflow

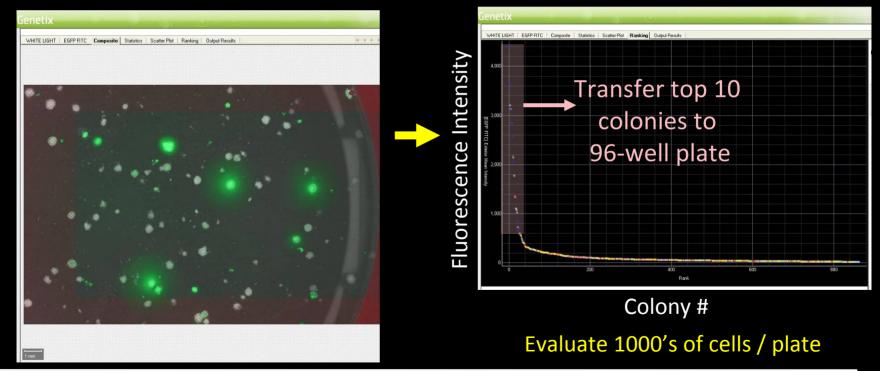
 BD FACSAriaII™: high speed data acquisition and cell sorting at rates up to 70,000 cells/sec in up to 15 parameters, along with single cell deposition for clonal isolation





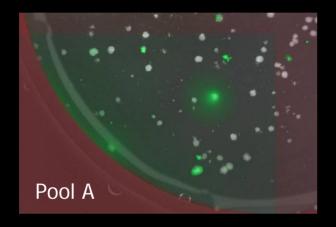
Genetix ClonePix FL

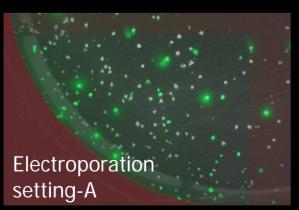
- Automated high resolution imager with sterile robotic picking head
 - Selection of cells secreting recombinant proteins (e.g. mAbs).
 - Plate cells at low concentration in semi-solid media
 - Single cells grow into discrete colonies (7-14 days)
 - Secreted recombinant product detected by fluorescently tagged antibodies specific for the target protein.

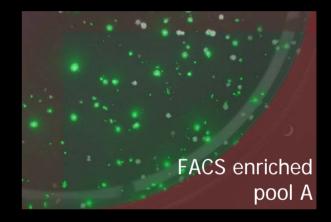


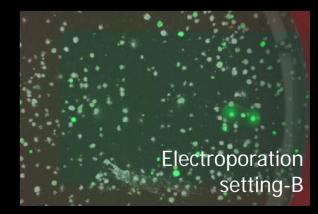
Selecting mAb Producing Clones

- Example composite image (white-light and florescent images)
 - Clearly identifies secreting colonies of interest
 - Selection criteria can be customised to select high-producing, robustly growing colonies








ClonePix Advantages

- Increased success rate for growth post picking
- Provides a visually intuitive feedback on cell line and transfection conditions

Stable Expression of the Agen mAb

Stable pools generated with Agen antibody cDNA

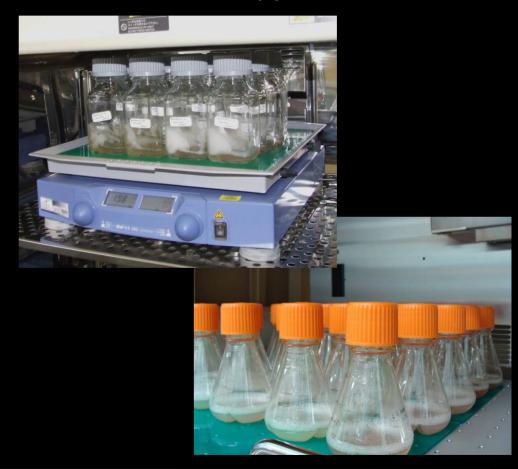
- clones selected for scale-up in ~5 months
- Project timeline:

•	cDNA resynthesis	3 weeks
•	Vector construction / verification	4 weeks

- Electroporation and G418 selection
 3 weeks
- Clonal isolation:
 - FACS and ClonePix2-4 weeks
- Clonal screening / adaptation
 2-4 weeks
- Clone verification:
 - Fed-batch analysis / monitoring stability
 6-8 weeks
- Note: Pools were not amplified

Analysis of Selected Clones

ClonePix **FACS** 201 83 #83 (98 mg/L) 186 Good correlation #201 (118 mg/L) with ELISA productivity #186 (32 mg/L) (7-day batch accumulations) **EGFP Fluorescence (IgG HC Transcription)**


Fed Batch Evaluation

Investigated commercially available media / supplements

- Spent media analysis
 - Glucose / glutamine
 - Amino acids
 - Trace minerals
- Hydrolysates
- Temperature shift
- CHO Efficient Feed

Standard conditions:

- ICD = 0.2 x 10⁶ cells/mL
 - 100% media exchange
- 125mL baffled shake flasks
 - 250mL square bottles
- 37°C, 7.5% CO₂, 170-200 RPM

Efficient Feed Supplements "A" and "B"

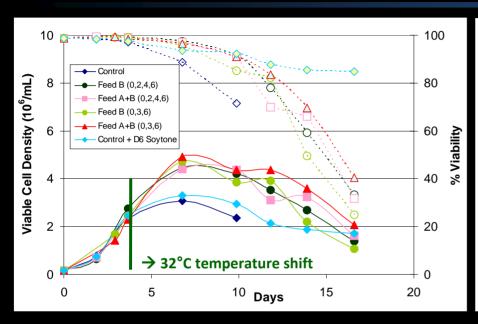
Chemically defined, protein free

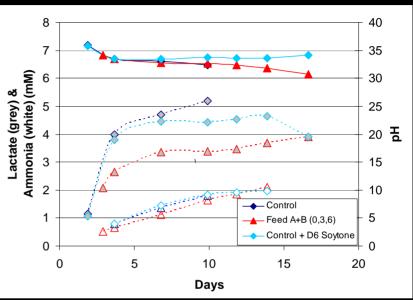
- Contains: Carbon source, concentrated amino acids, vitamins, salts, trace minerals
- Does not contain: Lipids, hydrolysates, or growth factors

Mini-DOE for multi-day feeding:

- 15% initial feed was beneficial
- Adding B or A+B yielded highest titer
 - Noted altered cellular metabolism with reduced lactate /ammonia accumulation
 - Increased cell diameter, higher osomolality (~350 mOsm/L)

Follow-up experiment with most promising conditions:


- Additionally investigated addition of hydrolysates
- Hypothermic temperature shift

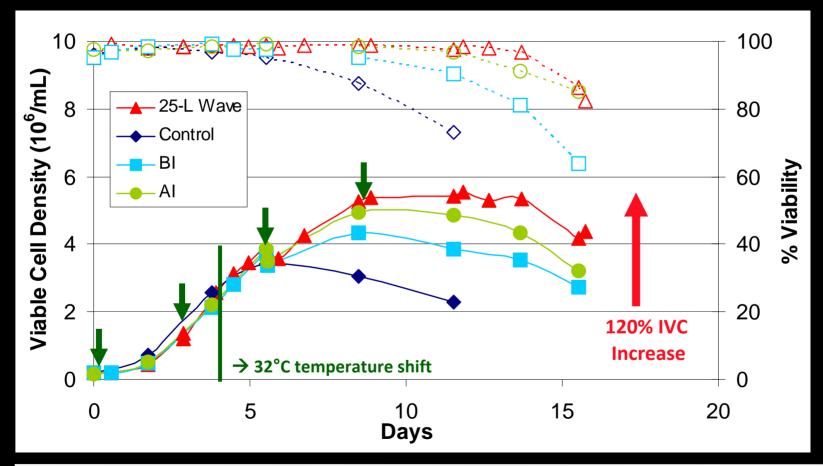


Efficient Feed Optimisation

- Feed A+B (day 0,3,6) yields best cell growth and mAb titer
 - Positive effect of Day 6 Soytone addition (cell growth and pH)
 - → Identified optimal feeding conditions

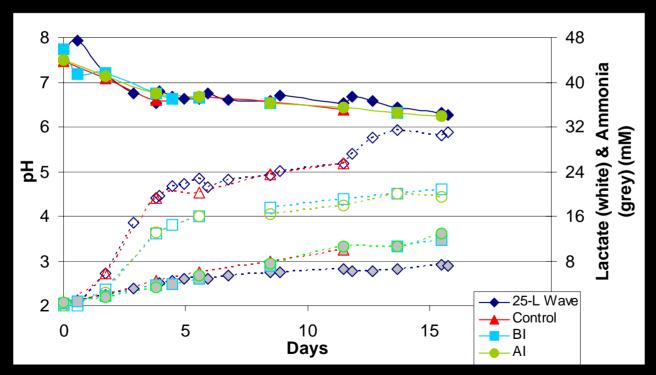
Scale-up of Fed-batch process

- Performed 25-L fed-batch process (50-L Cultibag)
 - pH manually adjusted (%CO₂ and 1M Na₂CO₃ addition)
 - Culture Feeds:
 - Efficient Feed A+B
 - 15% Day 0, 3, 10% Day 6
 - L-glutamine
 - 8mM Day 0, 5mM Day 6
 - Soytone Hydrolysate
 - 5g/L Day 9

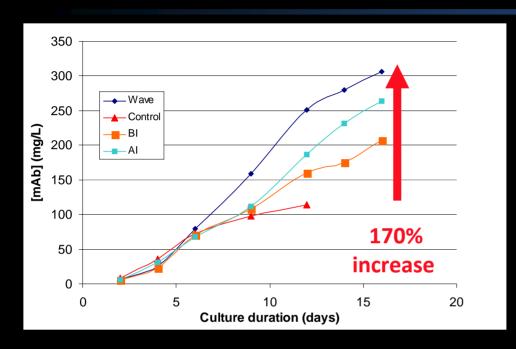


25-L mAb Production Run

Cell growth and viability:



Metabolites and pH profiles:


- Wave pH maintained at ~ 6.7
 - No base addition to small scale cultures
- Reduced lactate in Efficient Feed cultures
 - Wave suffered elevated pH (7.9) for initial 12 hours

25-L mAb Productivity Results

- Significant mAb increase over batch control
 - Product quality retained as compared to Agen reference mAb
- Acceptable productivity for non-amplified clone (q_p ≈ 7 pg/cell.day)

Continued fed-batch evaluations

Re-adaptation of above clone to alternative media and feeds:

Media	Feed	IVC increase	Titer increase
CD CHO (control)	15% A+B	-	-
SFM4CHO	15% A+B	2%	-54%
CHO Fusion	None	19%	76%
CHO Fusion	Fusion Hydrolysate	24%	18%

Summary

- Successfully demonstrated mAb production both transient and stable expressions systems
 - This technology is readily available to the Australian biotech industry
- EpiCHO is a transient system that promotes elevated and prolonged expression
 - Platform for rapid scalable production
- High-throughput equipment are powerful tools for efficient and intelligent clonal isolation
 - Provide continuous feedback for streamlining clonal selection
- Significant process improvements can be realised with fed-batch optimisation
 - "Off the shelf" solutions (+ a liberal amount of sweat)

Acknowledgements

AIBN – Mammalian Cell Engineering Group

- Peter Gray
- Trent Munro
- Warren Pilbrough
- Joe Codamo
- Stefanie Dietmair
- Jeff Hou

AIBN – NCRIS Biologics Facility

- David Chin
- Karen Hughes
- Steve Mahler
- Michael Song
- Ashleigh Linville
- Jongwei Wooh
- Kristin Raphaelli
- Kym Hoger
- Cherrine Chan

Images courtesy of http:\\en.ec.cn, www.theanimalfiles.com

- Agen

- Michael Gerometta
- Katey Whitham

BioPharmaceuticals Australia

- David Hughes
- Brett Whitecross

QLD and Federal Governments

Suppliers

- InVitro
 - SAFC
 - Invitrogen
 - BD
 - Millipore
 - Novozymes
 - GE
 - Sartorius-Stedim
 - Genetix

