Generating Conformation- and Mutation-Specific Antibodies to Disrupt Oncogenic RAS Signaling

Paul Marinec, Ph.D.
Wells Lab/UCSF
wellslab.ucsf.edu
Why RAS = Darth Vader

More than 30% of all human cancers are driven by mutations of RAS genes.

*Not a single therapeutic in the clinic that directly targets RAS
• acts as a binary switch, cycling b/t active & inactive states
• key controller of normal cellular growth & proliferation
• tightly regulated by GEFs and GAPs

Karnoub & Weinberg, 2008
Tight Regulation (Normally)

Inactivation involves GAPs, whereas activation involves PI3K and GEFs.
Mutations: Block Binding & ↓ Hydrolysis

Inactive

Unregulated Downstream Signaling

PI3K
Raf
RalGDS
TIAM-1
RASSF
AF6

Active

RasGAP
Cancers Exhibit Isoform + Mutation Specificity

<table>
<thead>
<tr>
<th></th>
<th>KRAS 12</th>
<th>KRAS 13</th>
<th>KRAS 61</th>
<th>HRAS 12</th>
<th>HRAS 13</th>
<th>HRAS 61</th>
<th>NRAS 12</th>
<th>NRAS 13</th>
<th>NRAS 61</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.07</td>
<td>0.05</td>
<td>0.84</td>
<td>961</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.13</td>
<td>0.06</td>
<td>0.02</td>
<td>0.07</td>
<td>0.02</td>
<td>0.11</td>
<td>0.01</td>
<td>0.01</td>
<td>0.58</td>
<td>333</td>
</tr>
<tr>
<td>AML</td>
<td>0.10</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.42</td>
<td>0.26</td>
<td>0.17</td>
<td>515</td>
</tr>
<tr>
<td>ALL</td>
<td>0.23</td>
<td>0.16</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.32</td>
<td>0.17</td>
<td>0.11</td>
<td>323</td>
</tr>
<tr>
<td>Lung</td>
<td>0.91</td>
<td>0.06</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.11</td>
<td>2034</td>
</tr>
<tr>
<td>Colorectal</td>
<td>0.78</td>
<td>0.20</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>14362</td>
</tr>
<tr>
<td>Pancreatic</td>
<td>0.99</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2975</td>
</tr>
</tbody>
</table>

- RAS mutations occur in >90% of pancreatic carcinomas....no other human tumor comes close in mutational frequency

Adapted from the COSMIC Database
*33% of all human cancers carry a RAS mutation

*99.2% of all RAS mutations occur at codons 12, 13, or 61

*Point mutations result in 6 possible AAs at each position

<table>
<thead>
<tr>
<th>Gly12</th>
<th>Gly13</th>
<th>Gln61</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>H</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>K</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>R</td>
</tr>
</tbody>
</table>
The Conformational Dynamics of RAS

RAS Effector Regions
Switch I
Switch II

Can I engineer an antibody to discriminate between the active and inactive conformations, and/or specifically recognize mutant forms of the RAS oncoprotein?

Inactive GDP-Bound
Our Antibody Discovery Pipeline

- **Selection Design**
- **Phage Display**
- **Primary Validation**
 - **Competition ELISAs**
 - **Clone Sequencing**
 - **Specificity Testing**
- **Secondary Validation**
 - **Affinity Testing**
 - **Large Scale Purification**
 - **Epitope Mapping**
- **Antigen Preparation**
 - **Competitive**
 - **Subtractive**

Goal = 1 mutation- and/or conformation-specific Fab that I could use as a scaffold for engineering others.
Power In Numbers: Our Phage Display Library

*Diversity primarily confined to CDR-L3 & H3

*H1 & H2 comprised of reduced binary code

Library CDR-L3 CDR-H1 CDR-H2 CDR-H3 Total Diversity

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library</td>
<td>896</td>
<td>2 x 10^7</td>
</tr>
<tr>
<td>Theoretical Diversity</td>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>Total</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Diversity</td>
<td>5 x 10^22</td>
<td>2 x 10^17</td>
</tr>
</tbody>
</table>
Phage Panning on our ‘Fab-uccino Machine’

40 Antigens

Binding Selection

Fab Phage Pool

Phage

Fab

Target

Amplification

E. coli host

Non-binding Phage Washed Away

Round 1 = 100nM
Round 2 = 50nM
Round 3 = 25nM
Round 4 = 10nM
Round 5 (-) = 100nM
A Synopsis of >9 Months in 1 Slide

- **Antigens**: 40
 - Purified & Biotinylated
 - Phage Display Library “F”
 - \(3.0 \times 10^{10}\)
 - in vitro selections
- **Single Colony Isolation**: 4,224
- **“Specific” Binders**: 624
 - Competition ELISAs
 - Phage Amplification & Sequencing
- **Unique Clones**: 159
 - Specificity ELISAs
- **Non-specific Binders**: 129
 - Specificity ELISAs
- **Unique & Specific Binders**: 30
Determining Fab Affinities on the OctetRed384

- 6 Biosensors = Anti-Human Fab CH1 (FAB)
- $[\text{Ag}] = 250\text{nM} - 0.1\text{nM} + \text{Blank}$
- Association = 15min, Dissociation = 10-60min
- Regen: (10s in 10mM Glycine, 10s in buffer) 3X

Mean K_D: 13.1nM, Range: 284pM - 28.9nM
Classical Sandwich Binning: Pairwise

1. Capture Target Fab
2. Load KRAS
3. Test other clones

Raw Data (Sensor Location)

- Time (s): 0 to 16000
- Sensor Locations: A1, B1, C1, D1, E1, F1, G1, H1
Sandwich Binning: Pairwise Matrix

- ≥ 4 separate epitope bins present within this panel of Fabs
‘Functional’ Epitope Binning

- 7 Fabs blocked by Raf1-RBD
- 6 Fabs could bind elsewhere on RAS in the presence of the Raf1-RBD

Fabs blocked by Raf1 binding induced cell death after 24h in H1792 cells when transferred into a CP-scaffold
Summary

• RAS is an important oncology target

• BLI is a fantastic high-throughput platform for validating antibody discovery efforts

• ‘Functional Epitope Binning’ greatly accelerates the triage of lead candidates

• The Octet Red384 is AWESOME!
Acknowledgements

Wells Lab
Prof. Jim Wells
Olivier Julien, Ph.D.

AntiBiome @ UCSF
Mike Hornsby, Ph.D.
Brian Lee, Ph.D.
Tet Matsuguchi, Ph.D.
Karolina Wypisniak

ForteBio
Terence Hui
John Mazzanti
Rashi Takkar

RECOMBINANT ANTIBODY NETWORK

NIH 5F32GM101846-03