Establishing a Platform Ligand-Binding Method on the ForteBio Octet

Carson Cameron, MS
Analytical Development Sr. Research Associate
KBI Biopharma
Who is KBI

• **About KBI: A Contract Development and Manufacturing Company**

• KBI helps partners accelerate and optimize drug development and manufacturing programs with an extensive suite of expert development and manufacturing services in an agile, client-friendly partnering environment
Role of Analytical Development

• Development
 • Method Development
 • Method Optimization
 • PD support (CLD, Upstream and Downstream)
 • Lots of Samples!

• Quality Control
 • Method Qualification
 • Stricter Requirements
 • Fewer Samples

Challenge: Technology that can be utilized in a Q.C. and in a high-throughput fashion

Answer: Platform Method allows for rapid development, optimization, and PD Support
How We Use Our Octet

- **ProA Titer**
 - >400 Titer samples/week

- **Kinetics/Dose Response**
 - Developed 10+ assays
 - Including Fc Receptor Panel

- **Advanced Titer**
 - Developed 5+

- **Relative Potency**
 - 9 Methods Developed
 - 6 Qualified
 - Also used as ID Test

- **Dual-Target Relative Potency**
 - Qualified Method for Dual-binding of Fc-fusion Antibody
1. Platform Development Consideration

2. Streamlining Development Using the Platform Method

3. When Platform Doesn’t Work?

4. Dual-Binding Potency Assay/ Troubleshooting
Step Times

Baseline: 30 – 60 sec.
Loading: ~ 3-5 minutes
Baseline/Wash: 60 – 120 sec.
Association: 2 – 10+ minutes

Platform:
- 60 sec.
- 5 minutes
- 60 sec.
- 5 minutes
Octet Sensor Selection

- **Ni (NTA)** Platform/Preferred
 - Protein A
 - SSA (Super Streptavidin)
 - AHC (Anti-Human Fc Capture)
 - AMC (Anti-Mouse Fc Capture)

- Anti-Human IgG Quantitation
- Aminopropylsilane
- Amine Reactive
- Anti-Human Fab
- Anti-GST

- **Anti-Penta-HIS**
- **Anti-His**
- **Protein G**
- **Protein L**
- **Streptavidin**
- **High Precision Streptavidin**

- **Kits:**
 - Anti-CHO HCP detection kit
 - Residual Protein A detection kit
 - Immunogenicity Assay Kit
Sensor Loading Impact

Protein A Sensors

Platform: ~1 nm shift at 5 minutes
Overview

1. Platform Development Consideration

2. Streamlining Development Using the Platform Method

3. When Platform Doesn’t Work?

4. Dual-Binding Potency Assay/ Troubleshooting
1. Load Density Scouting

- Sensor loading is evaluated using an antigen/protein to ensure sufficient protein is loaded on the sensor, but not overloaded.
2. Concentration scouting of 2nd molecule (antibody)

- Holding the first molecule (antigen) constant, a concentration range is evaluated for product association in a concentration dependent manor.

For typical antibodies, assay development would be done => method optimization and assessment (accuracy, linearity, etc.)
Examples:

• Biosimilar Antibody/Antigen:
 • Development/ Feasibility Time => 1 Day

• FcγR Potency Assay:
 • Development/ Feasibility Time => 12 Hours (recorded by analyst)

• FcRN Kinetics: (pH Challenges)
 • Development/ Feasibility Time => 5-7 Days
• Qualified 6 single target potency methods using different antibody/antigen pairs

• Platform has been leveraged for the development and/or qualification of multiple (15+) non-potency assays (Titer, Kinetics, etc.)

• Frequently achieve ≤10% RSD for sample triplicates and 90 – 110% Potency

• Release/stability method for activity much faster than typical ELISA or SPR

\[R^2 \geq 0.99 \]
Overview

1. Platform Development Consideration

2. Streamlining Development Using the Platform Method

3. When Platform Doesn’t Work?

4. Dual-Binding Potency Assay/ Troubleshooting
Common Platform Challenges

• Not all molecules can have a His-tag (no Ni-NTA sensors)

• Molecule specific challenges
 • Not stable in typical assay buffer
 • Buffer interference from ‘dirty’ samples
 • Method is not typical Antibody/Antigen
 » Glycoprotein (aggregation)
 » Bi-specific or Fusion protein (Dual Target)
Always Check Your Curves

Form 1 25 µg/mL
Form 1 12.5 µg/mL
Form 1 6.25 µg/mL
Form 2 20.3 µg/mL
Form 3 15.9 µg/mL
Overview

1. Platform Development Consideration

2. Streamlining Development Using the Platform Method

3. When Platform Doesn’t Work?

4. Dual-Binding Potency Assay/ Troubleshooting
An Example of When Nothing Works!

All Steps Aligned by step Baseline (Sensor Location)

Time (s)

nm
3. Addition of 3rd molecule

- Evaluate the 3rd molecule at multiple concentrations and identify the concentration that produces the largest wavelength shift \textit{but} keeps concentration dependent signal from previous step
Addition of 3rd Molecule
Troubleshooting

- Molecule Order
 - Switched 1st and 3rd Molecule
3 Molecule Troubleshooting

• Sensors:
 • Ni (NTA), Fc Capture, Streptavidin

• 1\text{st} and 3\text{rd} Molecules (antigens)
 • His-Tagged and/or Biotinylated of the following
 • Full Length Molecule (Transmembrane)
 • Extracellular Domain only
 • Partial Sequence (ECD and part of Transmembrane portion)
 • Non-Tagged antigens
 • Curve for the 1\text{st} molecule (constant Ab. And 3\text{rd})
 • Extended Ab step to saturate, then 3\text{rd} molecule curve
 • Pre-incubating Fc Fusion with the 3\text{rd} Molecule
3 Molecule Working?

- Sensors: Super Streptavidin
Negative Wavelength Shift

- Spectrophotometer in the instrument covers a range of 550-850 nm, a wavelength is adjusted to cover one of the cycles.

- Peak location is determined by the optical thickness \((n*d)\).

Small change in optical thickness vs. **Large** change in optical thickness:

- Four peaks in the window for small change.
- Five peaks in the window for large change.

Inversion of Signal

R Square 0.9964
Troubleshooting/Platform Conclusions

• Platform does not always work but can be used as a starting point

• Buffer compatibility

• Flip the assay

• Check the shapes of the curves

• Octet vs ELISA?
Acknowledgements

• Major Thanks to ForteBio!

• KBI BioPharma - AD Department
 • James Smedley III, Ph.D.
 • Brendan Peacor, Ph.D.
 • Andrew Cheeseman