
M
et

aM
at

te
rs

Inside:
Introduction 1
Current Events 1
Focus: MetaMorph NX Scripting 1-5
General information 6
Upcoming events 6Vo

lu
m

e
3

Is
su

e
3

Ju
ne

 2
01

1

Adding a Trigger Dialog with IronPython

One of the powerful new features available in the new MetaMorph®
NX Software is the integrated IronPython scripting environment.
IronPython is Microsoft’s open-source implementation of the Python
programming language. With the scripting tool, you can write and ex-
ecute code that automates or customizes operations in the MetaMorph
NX Software. The scripting language can be used both to perform
simple repetitive tasks or bring unique customized functionality to the
MetaMorph NX Software interface. Scripts you write are portable and
can be shared with other users.

In this issue of MetaMatters, we will show you a couple of examples
of the scripting environment in action. Be sure to check out the Meta-
Morph NX Software on-line help for further information. In addition,
you can find the scripts discussed in this issue on our knowledge base.

The Scripting Issue Current Events
Webinars
July 15, 2011: Dataset Management
and Measurement in MetaMorph® NX
Software
August 18, 2011: Introduction to Iron-
Python in MetaMorph NX Software
Register for Webinars on-line here.
Promotions
We are currently offering some great
incentives to upgrade to MetaMorph
NX Software. See our incentive pro-
motion page for details.
Twitter
For all the latest news and information
fromMolecular Devices, follow us on
Twitter at@Moldev.

It is often desired to have simple triggering control over
an external device. The device may be a micro-injector,
voltage stimulator, liquid handler, and so on. To accom-
plish this you must have the ability to send an output
trigger signal from the computer to the external device.
To do this we will employ the inexpensive USB-6501
from National Instruments. This is a basic digital output
module capable of generating the types of voltages we
will need to trigger an external device.

Follow these steps to get started:

1. Install the USB drivers that came with the USB-6501.

2. Connect the USB-6501 to a USB port on your com-
puter.

3. Download the IronPython script files from our sup-
port website (download files here). After downloading
the files unzip them to a convenient location.

4. Follow the on-line help to setup the USB-6501. The
driver to install is the “National Instruments NI-DAQmx”.
This will create four “shutter” outputs. We will use the
shutter lines to deliver the pulse to the external device.

5. Select the “Script” tab in MetaMorph NX Software
user interface, and press the “Load” button at the bottom
of the window. Navigate to the folder location for the
documents downloaded in step 3 above and select “run.
py”

http://mdc.custhelp.com/app/answers/detail/a_id/18689
http://www.moleculardevices.com/Support/Training-Center/Research-Imaging.html
http://www.moleculardevices.com/x4032.xml
http://www.moleculardevices.com/x4032.xml

Building Dialogs with MetaMorph NX Scripting
Creating a Python Script that Displays a Dialog for
Setting the Top and Bottom of a Z Series in the Meta-
Morph NX Software

To set up a Z series in MetaMorph NX Software, you must
first locate the center focal position of the Z series and then
define the range around it. However, this is not always easy
to do. For example, your sample may not be evenly distrib-
uted around the center focal position. In this case, the Z series
would be configured more accurately if you could locate
the top and bottom of the Z series, and then let the software
calculate the center and range of the Z series for you. Using
the Python scripting tool, we can create this functionality. We
can write a script that displays a dialog which lets the user set
the top and bottom of the Z series, and then the software can
use that information to calculate the center focal position and
range.

The z-series script and the DialogUtilities module it uses can
be downloaded from our knowledge base. To follow along
with the article it may be helpful to download these files. The
script is also reproduced here on page 5.

How the Script Works

At first glance, this script may seem complicated. However,
the way the script works is summarized in the six steps that
are labeled a through f:

a. We wanted the user to be able to see the chang-
es in focus, so the first thing we did was to call the
SetupUserInterface() function which sets up the rib-
bon and starts a Live acquisition.

b. Next, we wanted to ask the user to locate the top
and bottom of the Z Series. To do this, we used the
GatherTopAndBottom() function which displays a dialog
to gather the information and then records the results in a
variable. The next section of this article describes how to cre-
ate the dialog that this function uses.

c. To undo any changes we may have made to the user in-
terface in step a, we called CleanUpUserInterface() to
reverse those changes (in this case, we are stopping the Live
acquisition).

d. With the user input collected, we can start to set up the
Z series. After retrieving the zTop and zBottom out of
the results variable, step d uses those values to calculate the
zRange and zCenter. This is simple math performed in the
CalculateZRange() function.

e. As mentioned earlier, the MetaMorph NX software sets
up a Z series based on the center position and range of the
Z series. Now that we have that information we can use Figure 1: Input dialog generated by the z-series script.

Page 2

6. You will see the contents of the “run.py” script listed in the
“Create Script” pane. Modify the path in line 2 to the location
of the files you previously downloaded in step 3 above. Note,
the letter “r” prepended to the path is required.

7. Press the run button at the bottom of the window to start
the script.

The dialog presents a couple of options. The drop-down menu
allows you to select which shutter to use for sending the trig-
ger output. The text field allows you to set the duration of the
trigger pulse in milliseconds. Finally, the “Send Pulse” button
is used to well… send the pulse.

For those interested, here is a line by line run down of the
script statements and their function as shown in step 6.

Line 1: import sys is used to gain access to the sys li-
brary. The sys library provides a set of standard functions for
manipulating the underlying file system.

Line 2: append_path = r”C:\trigger-dialog” sets
the value of append_path to the location of the download-
ed script files described above.

Line 3: sys.path.append(append_path) allows the
downloaded files to be found by the embedded IronPython
interpreter.

Line 4: import Pulse is used to gain access to the Pulse
library. The Pulse library provides the functions we will use
next to setup the “Pulse Control” dialog.

Line 5: pulse = Pulse.Pulse(100, 1, MM) creates a
default pulse. You can open the file Pulse.py with a text editor
for more details.

Line 6: pulse.ShowDialog() pops-up the dialog.

Scripts associated with this article can be downloaded from
our knowledge base.

http://mdc.custhelp.com/app/answers/detail/a_id/18689
http://mdc.custhelp.com/app/answers/detail/a_id/18689

the ConfigureZSeries() function to provide appropriate
values for the software to use. The ConfigureZSeries()
function contains an example of how the software uses these
values.

f. It is often good practice to provide some feedback on how
the script executed. Step f uses the built-in MM.Print()
function to print the Z Series parameters used in the script in
the script’s Output text area.

How to Create the Dialog

In Step b above we used the GatherTopAndBotton()
function to display a dialog that asks the user for input. To
help script writers generate highly functional dialogs without
a lot of effort, we created a Python module called ‘DialogUtili-
ties’.

Downloading the DialogUtilities module

Before you can use the DialogUtilities module, you must place
the module file in the correct directory on your hard disk. The
module should be placed in the MetaMorph NX Software in-
stallation directory. This is usually C:\ProgramFiles\Molecular
Devices\MetaMorph NX\. To use the module you must import
it into the script using the import statement.

import DialogUtilities

Implementing the dialog used in the z-series script

In the z-series script, we wanted three inputs in the dialog:

•	 A field that displays the current Z focus position, allows
the user to set the focus position, and is updated as the focus
changes
•	 A button that records the current Z position to be used as
the top of the Z series
•	 A button that records the current Z position to be used as
the bottom of the Z series

Creating a dialog for user input involves four steps. These
steps are labeled 1 to 4 in the GatherTopAndBottom()
function. The steps for creating the dialog used in the z-series
script are as follows:

1. Create a DialogInputs object.
inputs = DialogInputs()
DialogInputs is a collection of the values you want to ob-
tain and their types. You create the DialogInputs before you
display the dialog to tell the dialog which fields you want and
how you want them displayed. After the user closes the dia-
log, the same DialogInputs object will contain the results (the
values selected or entered by the user).

2. In the DialogInputs collection, add fields for the inputs that
you want the user to provide. An input represents one field
on the dialog. You need to provide a name, type, and default
value for the field.
inputs[“Current Z”] = (“Current Z”,

DialogInputTypes.LinkedNumber, MM.StageAndZ.ZPosition)

•	 The name in this example is “Current Z” and it is locat-
ed both in the square brackets to the left of the equal sign and
the inside the parentheses to the right. The name is shown on
the label in the dialog.

•	 The type of the input is the second parameter on
the right of the equal sign – in the example above it is
DialogInputTypes.LinkedNumber. A linked number is
a field that stays in synch with a value from the MetaMorph
NX software. That is, the software immediately updates the
value in the field as the value in the software changes. Other
DialogInputTypes are discussed later in this article.

•	 The final parameter to the right of the equal sign is the
“default value.” What this value is depends on the type of the
input. For a LinkedNumber type of input, the value should be
a MetaMorph NX Property and it is the value that is kept in
synch between the input window and the underlying applica-
tion.

In addition to the above example input, two
DialogInputTypes.Button fields were added to the
dialog to display buttons for setting the top and bottom of the
Z Series.

3. Display the dialog and wait for the user to provide values.
inputMade = DialogUtilities.GetUserInput(inputs,

“Setup Z Series”, HandleErrors)

The DialogUtilities.GetUserInput() function
displays the dialog with the inputs you define. It takes three
parameters: the DialogInputs object configured in steps 1 and
2, a title to display on the input dialog, and a function used to
handle errors if any occur (the example z-series script includes
a minimalist version of a HandleErrors() function). The
GetUserInput() function waits for the user to close the
dialog, and will return False if the user closed the dialog with-
out pressing the OK button.

4. Use the results. Typically, the values entered by the user
would be available via the DialogInputs object you created in
steps 1 and 2. For example:

finalZPosition = inputs[“Current Z”].Value

In this example we extracted the value stored in the input us-
ing the input’s name in the square brackets (“Current Z”)
and using .Value to retrieve the value the user provided. In
the z-series script we held the requested data a different way
because we used buttons to set the top and bottom of the Z
series instead of input fields.

There are a number of different types of inputs that we can
gather from the user. The DialogInputTypes class defines the
types of inputs and fields that you can use with the Dia-
logUtilities module. These types are as follows:

•	 DialogInputTypes.String is for simple text input.
The user will be presented with a text box to type in a value.
The default value (third parameter when defining the input in
step 2) would be String which would populate the field before
the user types anything. The default value is optional. The
returned value will be the text that is displayed in the dialog
when the user closes the dialog, or an empty string if no text
was displayed.

•	 DialogInputTypes.Number is for input of any type
of number (integer or floating point). The Number field will
allow any numerical field to be entered, and is displayed as a
text box that does not allow letters or special characters to be

Page 3

entered. The default value would be a number which would
populate the field before the user inputs any numbers. The
default value is optional. The value returned when the dialog
closes is the number that is displayed when the dialog closes.

•	 DialogInputTypes.Checkbox is for an On/Off or
True/False option. The user will be presented with a simple
check box which can be selected or cleared. The default value
would be True or False, and if True would start the dialog with
the check box selected. The default value is optional. The
value returned will be True if the check box was left selected
when the dialog was closed or False otherwise.

•	 DialogInputTypes.SingleSelectList is used to
allow the user to select one of several options. It presents the
list to the user as a “combo” box. The default value is a list
of strings and defines what values should appear in the list of
options. The default value is optional, and if not present the
combo box will be empty. The returned value will be a string
with the name of the option the user had selected when the
dialog closed.

•	 DialogInputTypes.MultiSelectList is used to
allow the user to select more than one of several provided op-
tions. It presents the list as a text area, with each option dis-
played as a separate, selectable line (you can use Shift+Click
or CNTRL+Click to select multiple options). The default value
is a list of strings to show as selectable options. The default
value is optional and if not present will display no options.
The returned value will be a list of all the strings for each op-
tion the user selected, or an empty list if none were selected
when the dialog closed.

•	 DialogInputTypes.Button is used to provide a but-
ton to the user which will perform some action when the but-
ton is pressed. The text on the button will be the same as the
name of the input. The default value needs to be a function
which will be called when the button is pressed (it defines the
“action” that will be performed when the user presses the but-
ton). The default value is mandatory, and an error will occur
if the function is not present. There is no return value for a
button input (the value will return the function passed in as
the default value).

•	 DialogInputTypes.LinkedNumber is used to display
a number in the dialog which will be kept in synch with a
value in the underlying application. When the value in the
application changes, the value that is displayed in the text box
will also change. Likewise, when the user changes the value
in the dialog, the value changes in the underlying application.
The dialog allows only numerical input (including decimal
and negative numbers). The default value is the MetaMorph
NX Property which holds the value to be synched. The default
value is mandatory and will result in errors if not present.
The return value will be the same Property which the input is
synched with (not the value of the Property, but the Property
itself).

Using the Other Dialogs in the DialogUtilities Module

In addition to a dialog for gathering user input, the Dia-
logUtilities module has several other dialogs for informing or
alerting users.

DialogUtilities.ShowMessage(): Displays a simple
message to the user and an OK button.

DialogUtilities.ShowMessage(“Well Hello There”, “Examples”)

DialogUtilities.ShowWarning(): Displays a message
with a warning icon to indicate its importance.

DialogUtilities.ShowWarning(“Oh No! There may be a problem”,

“Examples”)

DialogUtilities.ShowYesNo(): Displays a dialog
which allows the user to answer a simple Yes/No question.
The response is returned as a True (if the user clicks Yes) or
False (if the user clicks No or exits the dialog without clicking
Yes or No).

response = DialogUtilities.ShowYesNo(“Should I Show a Mes-
sage?”, “Question”)
if response:
DialogUtilities.ShowMessage(“Here is the Message!”, “Answer”)
else:
MM.Print(“No message shown.”)

Page 4

Example: Set Up Z Series Script

Page 5

This script uses the DialogUtilities module to get user input
import DialogUtilities

Specifically, we want to use the DialogInputs and DialogInputTypes
from inside the DialogUtilities module.
from DialogUtilities import DialogInputs, DialogInputTypes

’’’
Display a dialog which allows the user to adjust the Z position to record
for the Top and the Bottom Of the Z series. The Z motor can be changed
either via software or hardware.

Returns the Top and the Bottom values (Top first, Bottom second) or an
empty Tuple if the user canceled.
’’’
def GatherTopAndBottom():
 # This list will hold the Z Positions for the Top and Bottom.
 # Defaults to current location
 zPositions = [MM.StageAndZ.ZPosition.Value,
 MM.StageAndZ.ZPosition.Value]

 # These functions will be used to set the top and bottom values when
 # buttons get pressed.
 def TopSet():
 zPositions[0] = MM.StageAndZ.ZPosition.Value
 def BottomSet():
 zPositions[1] = MM.StageAndZ.ZPosition.Value

 #####
 # 1. Create the DialogInputs object
 #####
 inputs = DialogInputs()

 #####
 # 2. Add Inputs (user controls) for user input
 #####
 # Display the current Z position
 inputs[“Current Z”] = (“Current Z”, DialogInputTypes.LinkedNumber,
 MM.StageAndZ.ZPosition)

 # Create two buttons, one to set the top (using TopSet()
 # to do the work) and the other to set the bottom.
 inputs[“Set Top”] = (“Set Top”, DialogInputTypes.Button, TopSet)
 inputs[“Set Bottom”] = (“Set Bottom”, DialogInputTypes.Button,
 BottomSet)

 #####
 # 3. Display the dialog to get user input
 #####
 inputMade = DialogUtilities.GetUserInput(inputs, “Setup Z Series”,
 HandleErrors)

 #####
 # 4. Use results.
 #####
 if inputMade:
 # If the user presses OK, return Top and Bottom
 return zPositions[0], zPositions[1]
 else:
 return ()

’’’
This function is used to set up the GUI in preparation to allow the user
to setup the Z series. It will make sure Ribbons are in the correct
position and will start live mode, for example.
’’’
def SetupUserInterface():
 MM.Acquisition.AcquisitionMode.Value = 0
 MM.ZSeries.IsSeriesUsed.Value = True

 UI.Ribbon.SelectActiveTabByName(‘Mode: Multidimensional’)
 MM.Camera.StartLiveMode()

’’’
Undoes any changes to the User Interface which need undoing after the
script
runs, for example it stops live mode.
’’’
def CleanUpUserInterface():
 MM.Camera.StopLiveMode()

’’’
Calculates the center and range of the Z Series, and provides the two
values needed to configure NX

Returns the Range and Center of the Z Series (Range first, Center second)
’’’
def CalculateZRange(zTop, zBottom):
 if zTop > zBottom :
 zRange = (zTop - zBottom)
 zCenter = (zTop - (zRange/2))
 else :
 zRange = (zBottom - zTop)
 zCenter = (zBottom - (zRange/2))

 return zRange,zCenter

’’’
Setups appropriate MM NX Properties for the Z Series
’’’
def ConfigureZSeries(zRange, zCenter):
 MM.StageAndZ.ZPosition.Value = zCenter
 MM.ZSeries.Range.Value = zRange

’’’
This example error handler simply re-raises any error which may occur so
it gets handled by NX.
’’’
def HandleErrors(error):
 raise error

’’’
Note: The rest of this code is not in a function call, which means it
gets executed automatically when the script is loaded. We use it to
define the order in which the other functions are called.
’’’

These lines will handle the User Interface related to getting
the Top and Bottom of the Z Series by calling the appropriate
functions.
SetupUserInterface() # a.
results = GatherTopAndBottom() # b.
CleanUpUserInterface() # c.

#If the user pressed OK on the dialog configure the Z series with the
appropriate range and center.
if results:
 zTop, zBottom = results
 zRange, zCenter = CalculateZRange(zTop,zBottom) # d.
 ConfigureZSeries(zRange,zCenter) # e.
 MM.Print(“(Top,Bottom) (Range,Center):
 (“ + str(zTop) + “,” + str(zBottom) + “)
 (“ + str(zRange) + “,” + str(zCenter) + “)”) # f.

Page 6

Exhibitions
November 12-16, 2011
Society for Neuroscience Annual
Meeting
Washington, DC
December 3-7, 2011
ASCB Annual Meeting
Denver, CO

Training
July 15, 2011
Webinar: Dataset Management and
Measurement in MetaMorph NX
Software

August 19, 2011
Webinar: An introduction to
IronPython in MetaMorph NX
Software

September 19, 2011
MetaMorph NX Software
Introductory Training Course
Downingtown, PA

September 20-21, 2011
Metamorph® Software Basic
Training Course
Downingtown, PA

September 22-23, 2011
Metamorph Software Advanced
Training Course
Downingtown, PA

September 30, 2011
Webinar: TBD
November 18, 2011
Webinar: TBD

Supported Courses
October 11-21, 2011
OMIBS
MBL, Woods Hole, MA

October 19-November 1, 2011
In-situ Hybridization & Live Cell
Imaging
CSHL, Cold Spring Harbor, NY

Important Web Links
Product Information:
Overview of available MetaMorph Software
products

http://www.moleculardevices.com/Products/
Software/Meta-Imaging-Series.html

Comparison of available MetaMorph Software
products

http://www.moleculardevices.com/Products/
Software/Meta-Imaging-Series/Comparison-
Table.html

Application modules available for MetaMorph
Software

http://www.moleculardevices.com/Products/
Software/Meta-Imaging-Series/Application-
Modules.html

List of distribution partners http://www.moleculardevices.com/Company/
Who-We-Are/Contact-Us/Distributors/Meta-
Morph.html

Support:
MetaMorph Software updates and upgrades http://www.meta.moleculardevices.com/up-

dates/

MetaMorph NX Software updates and upgrades http://www.meta.moleculardevices.com/up-
datesnx

MetaMorph Software supported hardware
database

http://support.meta.moleculardevices.com/
hardware/hardware.php

MetaMorph Software supported operating
systems

http://support.meta.moleculardevices.com/info/
os-compatibility.php

Technical and application notes for MetaMorph
Software

http://mdc.custhelp.com/app/home

Back issues of MetaMatters newsletter http://mdc.custhelp.com/app/answers/detail/a_
id/18689

Information and registration for MetaMorph
Software training courses and webinars

http://www.moleculardevices.com/Support/
Training-Center/Research-Imaging.html

©2011 Molecular Devices (US) Inc.
METAMORPH and the METAMORPH logo are registered trademarks of Molecular Devices (US) Inc.
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Upcoming Training, Courses, and Exhibitions

Contact Us
Molecular Devices Inc.
402 Boot Road
Downingtown, PA 19335
USA

Phone Toll Free: (800) 635-5577
Phone Intl.: (610) 873-5610
Fax: (610) 873-5492
Support: (800) 635-5577 x1820
 (408) 747-1700 x1820

On the web: www.moleculardevices.com

Sales: meta.admin@moldev.com
Orders: om-meta@moldev.com
Support: support.dtn@moldev.com
Training: training.dtn@moldev.com

MetaMorph® Software…
making imaging easy!

http://www.moleculardevices.com/Products/Software/Meta-Imaging-Series.html
http://www.moleculardevices.com/Products/Software/Meta-Imaging-Series.html
http://www.moleculardevices.com/Products/Software/Meta-Imaging-Series/Comparison-Table.html
http://www.moleculardevices.com/Products/Software/Meta-Imaging-Series/Comparison-Table.html
http://www.moleculardevices.com/Products/Software/Meta-Imaging-Series/Comparison-Table.html
http://www.moleculardevices.com/Products/Software/Meta-Imaging-Series/Application-Modules.html
http://www.moleculardevices.com/Products/Software/Meta-Imaging-Series/Application-Modules.html
http://www.moleculardevices.com/Products/Software/Meta-Imaging-Series/Application-Modules.html
http://www.moleculardevices.com/Company/Who-We-Are/Contact-Us/Distributors/MetaMorph.html
http://www.moleculardevices.com/Company/Who-We-Are/Contact-Us/Distributors/MetaMorph.html
http://www.moleculardevices.com/Company/Who-We-Are/Contact-Us/Distributors/MetaMorph.html
http://www.meta.moleculardevices.com/updates/
http://www.meta.moleculardevices.com/updates/
http://www.meta.moleculardevices.com/updatesnx/
http://support.meta.moleculardevices.com/hardware/hardware.php
http://support.meta.moleculardevices.com/hardware/hardware.php
http://support.meta.moleculardevices.com/info/os-compatibility.php
http://support.meta.moleculardevices.com/info/os-compatibility.php
http://www.moleculardevices.com/Support/Training-Center/Research-Imaging.html
http://www.moleculardevices.com/Support/Training-Center/Research-Imaging.html

