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Selecting the best curve fit 
in SoftMax Pro 7 Software


APPLICATION NOTE


Introduction
Choosing the correct curve fit model is crucial when 
determining important characteristics of data such as the 
rate of change, upper and lower asymptotes of the curve, 
or the EC50/IC50 values. The curve fit of choice should 
represent the most accurate relationship between two 
known variables: x and y. Therefore, the goal of curve 
fitting is to find the parameter values that most closely 
match the data, or in other words, the best mathematical 
equation that represents the empirical data. SoftMax® Pro 
7 Software offers 21 different curve fit options, including 
the four parameter logistic (4P) and five parameter logistic 
(5P) nonlinear regression models. These ensure that the 
plotted curve is as close as possible to the curve that 
expresses the concentration versus response relationship 
by adjusting the curve fit parameters of the chosen model 
to best fit the data.


This technical note discusses the different linear and  
non-linear regression models available in SoftMax Pro 7.  
In addition, a protocol has been implemented with the sum 
of squared errors and the Akaike’s Information Criterion 
methods in order to evaluate different curve fit models to 
best represent the data.


Linear regression
The simplest method to analyze data is to use a linear 
regression curve fit. It is represented by the equation 
y = A + Bx, where x (generally the concentration) is 


Benefits


•  Graph your data in the best possible way using one 
of the 21 different curve fit options


• Examine the suitability of a given curve fit with the 
parameter independence feature


• Apply global curve fits for estimated relative potency 
and parallel line analysis


• Apply independent curve fits to plots within the 
same graph


an independent variable and y (the response) is the 
dependent variable. The slope of the line is B and A is 
the y intercept when x=0. SoftMax Pro provides three 
linear regression curve-fitting methods. These are linear 
(y = A + Bx), semi-log (y = A + B * log10(x)) and log-log 
(log10(y) = A + B * log10(x)). SoftMax Pro will find the best 
straight line through the data (Figure 1). The linear range 
of an assay can be determined using a minimum of three 
data points on the x-axis; however, additional standard 
concentrations within the specified range should be 
added to improve the accuracy of the fit1. The primary 
advantage of this method is that it is simple. However, in 
most cases, the relationship between measured values 
and measurement variables is nonlinear.
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Nonlinear regression
Nonlinear data are commonly modeled using logistic 
regression. In this case, the relationship between the 
measured values and the measurement variable is 
nonlinear. The goal is also to find those parameter values 
that minimize the deviations between the measured and 
the expected values. In order to choose the correct fit, 
it is important to understand the general shape of the 
model curves and compare them with the shape of the 
data points2.


SoftMax Pro provides 17 non-linear regression curve-fitting 
methods; these include quadratic, cubic, quartic, log-logit, 
cubic spline, exponential, rectangular hyperbola (with 
and without a linear term), two-parameter exponential, 
bi-exponential, bi-rectangular hyperbola, two site 
competition, Gaussian, Brain-Cousens, 4P, 5P, and 5P 
alternate. SoftMax Pro has been implemented with the 
most widely used iterative procedure for nonlinear curve 
fitting, the Levenberg-Marquardt algorithm, in order to 
achieve the best possible curve-fitting. 


The two most common nonlinear curve fits are the 4P and 
5P, which are sigmoid functions that produce an S shaped 
curve (Figure 2). They require at least four data points 
and five data points for the 4P and 5P curve fit model, 
respectively, but a more accurate fit is obtained by using  
at least six points for these regression types1. The 4P curve 
fit is described by the following equation:


y = ((A - D) / (1+ ((x/C)^B))) + D


Where y is the response, D is the response at infinite 
analyte concentration, A is the response at zero analyte 
concentration, x is the analyte concentration, C is the 
inflection point (EC50/IC50), and B is the slope factor. 
The response increases with concentration if A<D and 
deceases if A>D. The 4P curve fit is a symmetrical function: 


one half of the curve is exactly symmetrical to the other 
half with the EC50/IC50 in the middle.


However, some immuno- and bio-assay data are not 
symmetrical and need additional flexibility. In those 
situations, the 5P model may work better as it allows 
asymmetrical data fitting by adding another parameter,  
G (Figure 2). The general equation is as follows:


y = ((A - D) / (1 + ((x/C)^B)) ^G) + D


The asymmetry parameter permits each half of the curve 
to be different. However, when the asymmetry is small, it is 
advised to use the 4P curve fit model especially if Parallel 
Line Analysis (PLA) is used in the assay.


Choosing the best curve fit
The overall goodness of the curve fit, particularly the 
standard curve, should be assessed to obtain accurate 
and precise data. It is important to run several experiments 
during the evaluation of a curve fit model as it is difficult 
to distinguish poor performance from the assay noise in a 
single run. The R2 value is generally a good representation 
of the goodness of the fit. An R2 value is considered a very 
good fit when it is above 0.99. However, the R2 value can 
be misleading particularly when the standard deviation 
varies with sample concentration3. Ideally, the standard 
deviation should be the same at all sample concentrations 
(homoscedastic data); however, it is not always the case 
and the standard deviation generally increases with the 
sample concentration (heteroscedastic data). Methods 
developed to normalize the data include the Sum of 
Square Errors (SSE) using the F statistic and the Akaike’s 
Information Criterion (AIC) methods. Both methods 
are very similar as they are an assessment of the error 
between the obtained and the predicted (from the curve fit 
model of choice) values.
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Figure 1. Example of a linear curve fit. Figure 2. Concentration-response curve fitted with the 4P and the 5P 
curve fit models for comparison. Although the 4P model gives a smooth 
symmetrical curve, data are clearly asymmetrical. Therefore, the 5P 
model gives a better fit.
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The SSE method is also called the summed square 
of residuals method as it uses residuals and residual 
plots (residuals vs. concentration). The residuals are the 
differences between the response y and the predicted 
response ŷ obtained from the curve fit model of choice at 
each concentration4: Residual = data – fit = y – ŷ. Residuals 
represent the random errors. Therefore, when the curve 
fit model of choice is correct for the data, residuals 
should appear randomly scattered around the zero line 
on the residual plot (Figure 3A). If the residuals display a 
systematic pattern on the residuals plot (Figure 3B), then it 
is a clear sign that the model fits the data poorly.


The SSE is obtained using the following formula:


calculated using the SSE for data with normally distributed 
errors as followed:


AIC = n * log (SSE/n) + 2K


where n is the sample size and K is the number of 
parameters describing the curve. For small sample sizes 
(i.e., n/K < ~40), the second-order Akaike Information 
Criterion (AICc) should be used instead:


AICc = AIC + 2K * (K + 1) / (n - K - 1)


where n is the sample size and K the number of parameters 
describing the curve. As sample size increases, the last 
term of the AICc approaches zero and the AICc tends to 
yield the same conclusions as the AIC5. The AIC and AICc 
take into account both the statistical goodness of the fit 
and the number of parameters that have to be estimated to 
achieve this particular degree of fit. The AIC penalizes for 
the addition of parameters and thus selects a model that 
fits well but has the minimum number of parameters. The 
curve fit with the lower values of the AIC or AICc indicate 
the preferred model, that is, the one with the fewest 
parameters that still provides a good fit of the data5.


Both methods are useful to determine which curve fit 
best describes the data, but they do not provide a test of 
a model in the sense of testing a null hypothesis: i.e they 
do not give information on the goodness of the fit. If only 
poor models are considered, it logically selects the best of 
the poor models. There is an infinite universe of models; 
curve fitting can find the best parameters for a given 
model and/or compare two models, but the candidate 
models should be based on previous investigations and 
on scientific considerations. After having specified the 
set of plausible models to explain the data and before 
conducting the analyses, one should assess the fit of the 
global model defined as the most complex model of the 
set. We generally assume that if the global model fits, 
simpler models will also fit because they originate from the 
global model5,6.


Figure 3. Residual plots of data fitted to linear and 4P curve models. (A) The plotted residuals appear randomly scattered around zero indicating that the 
4P model describes the data well. (B) The residuals display a systematic pattern showing that the linear model fits the data poorly.


SSE = Σ wi(yi - ŷi)2
i = 1


n


Minimizing the SSE provides a maximum likelihood estimate 
of the model parameters based on the assumption that 
data errors are independent and normally distributed. The 
best curve fit is the one whose parameters generate the 
smallest SSE. If both models fit the data sensibly, the plot 
that gives the smallest SSE is the best one to use.


When the two models are nested and one is the special 
case of the other, e.g. 4P is a special case of a 5P where 
G=1, the model with the more detailed equation (more 
parameters) is guaranteed to have a SSE less than or 
equal to the other model. This is because the model with 
more parameters will allow more inflection points to fit the 
data4. Therefore, some additional statistical calculations, 
F test and F probability, are needed to determine which 
model best fits the data. The F probability uses the F test 
and the degrees of freedom associated with the curve 
fit model to assess if the decrease in SSE occurred by 
chance. Typically, a probability below 0.05 (equivalent 
to 95 % confidence) is used as the threshold and means 
that the model with the most detailed equation is a better 
representation of the data.


The AIC method uses a likelihood statistic to compare the 
goodness of fit of the given data for two curve fit models 
where one is a special case of the other. The AIC can be 
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Measuring the goodness  
of the fit
SoftMax Pro 7 has been implemented with a new 
parameter, Independence, which is one way to examine 
the suitability of a given curve fit for the data set. The 
parameter dependency is a measure of the extent to 
which the best value of one parameter depends on the 
best values of the other parameters. For a curve fit model 
of two or more parameters, the parameters describing 
the curve can be either intertwined (ideal case with an 
independence of one) or redundant (worst case with 
independence of zero).


If one parameter is changed after fitting the data with the 
chosen curve fit, the curve moves away from the data 
points. If you change the values of the other parameters to 
compensate for the fixed parameter and the curve moves 
closer to the points, but with a different curve fit than 
originally set, then the parameters are intertwined. On the 
other hand, if the curve goes back to its original position, 
then the parameters are redundant.


The independence is a number between zero and one with 
one being the ideal. To display the independence in the 
graph legend, click on the curve fit settings icon (Figure 4). 
The curve fit settings window will appear. Simply select the 
Statistics tab and tick “Calculate Parameter Dependencies”.


The graph legend will now display the independence for 
each parameter describing the curve (Figure 5).


In the graph fit legend in Figure 5, parameter independence 
has been translated into bars with logarithmic scaling. Ten 
bars indicate a high degree of independence. Because 
only very small values indicate a problem, a nonlinear 
transformation is used for this translation. If one or more 
parameters have few bars or no bars, the curve fit might 
not be appropriate for the data set.


For example, if the data set was sigmoidal with clear lower 
and upper asymptotes, a 4P fit would be appropriate with 
many bars for all parameters. However, if one or both of 
the asymptotes were missing, the A or the D parameter 
would have few bars indicating that reliable values 
couldn’t be deduced from the data set.


Protocol available: Curve 
Fitting Evaluation
A protocol, Curve Fitting Evaluation, has been developed 
in SoftMax Pro that automatically calculates the SSE,  
F probability, and AICc values upon data entry. A result 
section has been implemented that contains all relevant 
calculations with the curve fit conclusion using the 
SSE and AICc methods (Figure 7). The protocol can be 
downloaded from the SoftMax Pro Protocol Home.


In the following example, data were fitted to a 4P (Figure 
6A) and a 5P (Figure 6B) curve fit model which both give 
an R2 value of 1. All results and calculations were outlined 
in Figure 7.


Figure 4. Curve fit display in SoftMax Pro 7. (A) Menu. (B) Curve fit settings.
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B


Figure 5. Graph legend showing the parameter independence. The 
independence is translated into bars where ten bars indicate a high 
degree of independence.
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https://support.moleculardevices.com/s/article/SoftMax-Pro-Protocol-Home
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Figure 6. Data fitted into curve models. (A) 4P curve fit. (B) 5P curve fit.


Figure 7. SSE and AICc tests. Results of data fitted into 4P and 5P curve models using the Curve Fitting Evaluation protocol.







moleculardevices.com   |   © 2022 Molecular Devices, LLC. All rights reserved. moleculardevices.com   |   © 2022 Molecular Devices, LLC. All rights reserved.


The SSE method showed that the 5P curve fit model was 
a better choice than the 4P for the data with the SSE of 
0.058 and 0.027 for the 4P and the 5P curve fit model 
respectively. The issue was that the 4P curve fit model 
was a special case of the 5P curve fit model (4P is 5P 
where G=1). Therefore, the 5P curve fit model was at least 
as good as a 4P. Additional statistics were needed. The 
F test (61.539) and F probability (0.000) confirmed that 
the 5P curve fit model was a better representation of the 
data than the 4P curve fit model in this example. The AICc 
method also showed that the 5P offered a better fit to the 
data than the 4P curve fit model: AICc of -405.365 for the 
4P and -447.945 for the 5P curve fit model. Finally, the 
residual plot had residuals randomly scattered around the 
zero line and confirmed that either curve fit model was 
correct for the data (Figure 8). Taken together, the test 
methods indicated that the 5P curve fit model was a better 
fit to the data.
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Summary
A wide range of mathematical models are available in SoftMax Pro 7 including the widely used 4P and 5P curve fit models. 
The R2 value can be a poor measure of the curve fit quality for the data, particularly for heteroscedastic data. The SSE with 
the F probability and the AICc methods are useful to compare the goodness of the fit and to choose the best possible curve 
fit model with confidence. However, the first step is to make sure that both models fit the data with sensible values and make 
scientific sense. SoftMax Pro 7 includes a method of calculating the parameter dependency to estimate the goodness of a 
curve fit. The resulting parameter independence is visually displayed in the graph legend to help interpret your data easily. 
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Figure 8. Residual plot for data fitted into 4P and 5P curve models.
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