Number of Citations*: 102
Latest Citations: For a complete list, please click here .
*Source: https://scholar.google.com/

Measuring affinity constants of 1450 monoclonal antibodies to peptide targets with a microarray-based label-free assay platform
Monoclonal antibodies (mAbs) are major reagents for research and clinical diagnosis. For their inherently high specificities to intended antigen targets and thus low toxicity in general, they are pursued as one of the major classes of new drugs. Yet binding properties of most monoclonal antibodies are not well characterized in terms of affinity constants and how they vary with presentations and/or conformational isomers of antigens, buffer compositions, and temperature.

Fit for genomic and proteomic purposes: Sampling the fitness of nucleic acid and protein derivatives from formalin fixed paraffin embedded tissue
The demand for nucleic acid and protein derivatives from formalin-fixed paraffin-embedded (FFPE) tissue has greatly increased due to advances in extraction and purification methods, making these derivatives available for numerous genomic and proteomic platforms. Previously, DNA, RNA, microRNA (miRNA), or protein derived from FFPE tissue blocks were considered “unfit” for such platforms, as the process of tissue immobilization by FFPE resulted in cross-linked, fragmented, and chemically modified macromolecules. We conducted a systematic examination of nucleic acids and proteins co-extracted from 118 FFPE blocks sampled from the AIDS and Cancer Specimen Resource (ACSR) at The George Washington University after stratification by storage duration and the three most common tumor tissue types at the ACSR (adenocarcinoma, squamous cell carcinoma, and papillary carcinoma).
Go to article

Microplate for high performance spectroscopic applications
A microplate for making optical measurements is described. The microplate uses two optical flats, which for example can be quartz glass, and a spacer having a plurality of holes defined in the spacer. In use a first optical flat is assembled with the spacer and liquid samples of materials of interest are deposited in one or more of the plurality of holes in the spacer. The volume of each liquid sample is controlled to be sufficient to form a meniscus between the first optical flat and a second optical flat placed over the spacer. The liquid samples do not touch the walls of the holes defined in the spacer. The samples can be examined from either side of the assembled microplate. The microplate can be operated in a horizontal or a vertical orientation. The microplate is easily disassembled, cleaned and made ready for reuse.