Citations : Enhanced detoxification of exogenous toluene gas in transgenic Ardisia pusilla expressing AtNDPK2 gene

Dated: Aug 26, 2020

Publication Name: Horticulture, Environment, and Biotechnology

The Arabidopsis nucleoside diphosphate kinase 2 (AtNDPK2) gene is known to regulate the cellular redox state, and to enhance tolerance to multiple stressors in plants. In this study, we transferred AtNDPK2 under the stress-inducible promoter SWPA2 into Ardisia pusilla to enhance the plants’ ability to detoxify toluene gas. Thirty transgenic A. pusilla lines were confirmed by PCR analysis with AtNDPK2 and NPTII gene-specific primers. In addition, four transgenic A. pusilla lines were further confirmed by Southern blot analysis to verify the gene copy number. Three transgenic lines showed a single-copy transgene insertion, and one transgenic line had two transgene insertions. To test the gene expression of AtNDPK2 in the transgenic A. pusilla lines exposed to and not exposed to toluene treatment, qRT-PCR analysis was performed. The gene expression of AtNDPK2 in transgenic A. pusilla plants exposed to toluene treatment was significantly higher than that of transgenic plants not exposed to toluene treatment. Finally, we measured toluene removal efficiency of the transgenic and non-transgenic A. pusilla lines exposed to toluene-contaminated air. There was a statistically significant difference between the transgenic and non-transgenic A. pusilla lines at all time points (p < 0.001). The highest toluene removal efficiency (797.33 ± 59.41 µg m−3 cm−2 leaf area) was recorded in the transgenic A. pusilla line NDPK2-12-4 after 3 h of exposure to toluene, while the non-transgenic line showed little toluene removal efficiency (206.2 ± 31.19 µg m−3 cm−2 leaf area). These results suggest that the capacity for detoxifying toluene gas is related to the AtNDPK2 gene in A. pusilla. Therefore, this study provides useful results to reduce toluene pollution in indoor air.

Read More

Contributors: Chang Ho Ahn, Nan-Sun Kim, Ju Young Shin, Young Ah Lee, Kwang Jin Kim, Jeong Ho Kim, Pil Man Park, Hye Ryun An, Yae-Jin Kim, Won Hee Kim & Su Young Lee